Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Role of size, alio-/multi-valency and non-stoichiometry in the synthesis of phase-pure

high entropy oxide (Co,Cu,Mg,Na,Ni,Zn)O

Nandhini J. Usharani, Rajat Shringi, Harshil Sanghavi, S. Subramanian² and S.S. Bhattacharya[#]

Nano Functional Materials Technology centre, (NFMTC),

Department of Metallurgical and Materials engineering,

²Sophisticated Analytical Instrument Facility,

Indian Institute of Technology Madras, Chennai-600036, India.

#ssb@iitm.ac.in

Figure S1 Rietveld refinement of XRD pattern of (Ca,Co,Cu,Mg,Ni,Zn)O showing the presence of rocksalt structure and CaO

Figure S2 Rietveld refinement of the XRD pattern of (Cu,Mg,Na,Zn)O showing the presence of multiple phases (rocksalt – 52%, monoclinic – 26%, hexagonal – 20.17% with some minor amounts of orthorhombic $Na_2Cu_2O_2$ and tetragonal NaCuO)

2-theta (°)	d-spacing (Å)	(hkl)
36.629	2.45133	(-201)
36.703	2.446501	(110)
36.718	2.445596	(001)
42.529	2.123879	(200)
42.665	2.117439	(-111)
61.758	1.500846	(-311)
61.879	1.498212	(111)
61.882	1.498152	(-202)
61.964	1.49636	(020)
73.9	1.28141	(-401)
74.002	1.279899	(310)
74.066	1.278951	(201)
74.1	1.278448	(-312)
74.184	1.277205	(-221)
74.21	1.276819	(-112)
74.239	1.276392	(021)
77.873	1.225665	(-402)
78.056	1.223251	(220)
78.09	1.222798	(002)

Table S1 d-spacing obtained from Rietveld refinement of (Co,Cu,Mg,Ni,Na,Zn)O

Cation	Х	Y	Z	occupancy
0	0	0.5	0.5	0.9326
Со	0	0	0	0.1666
Cu	0	0	0	0.1666
Mg	0	0	0	0.1666
Na	0	0	0	0.1666
Ni	0	0	0	0.1666
Zn	0	0	0	0.1666

Table S2 Occupancy of cations from Rietveld refinement of (Co,Cu,Mg,Na,Ni,Zn)O

Table S3 Composition from energy dispersive spectroscopy

Composition	Co (%)	Cu (%)	Na (%)	Ni (%)	Mg (%)	Zn (%)
Na-TMO	8.3	6.5	9.6	8.0	10.0	7.6
ME-TMO	11.3	9.7	-	10.3	8.4	10.3

Cation	Oxidation state	Assigned to	Position (eV)
		2p _{3/2}	856.39
	+3	2p _{3/2} satellite	862.45
		2p _{1/2}	873.52
Ni		2p _{3/2}	855.03
1 12	+2	2p _{3/2} satellite	860.31
		2p _{1/2}	871.86
		$2p_{1/2}$ satellite	877.65
	0	2p	852.86
		2p _{3/2}	779.73
	+3	2p _{3/2} satellite	788.82
Со	+2	2p _{1/2}	796.26
		$2p_{1/2}$ satellite	803.27
		2p _{3/2}	781.72
		2p _{3/2} satellite	786.04
		2p _{1/2}	794.14
		2p _{1/2} satellite	800.48
		2p _{3/2}	933.03
	10	2p _{3/2} satellite	938.68
Cu	+2	2p _{1/2}	954.23
Cu		2p _{1/2} satellite	960.65
	. 1	2p _{3/2}	932.46
	+1	2p _{1/2}	952.03
Na	+1	1s	1070.89
		2p _{3/2}	1020.36
Zn	+2	2p _{3/2} satellite	1035.04
		2p _{1/2}	1043.37
Mg	+2	2p	49.54
	O ²⁻		530.05
0	O ¹⁻	- 1s	531.80
	Adsorbed		533.70

Table S4 Assignment of the peaks obtained in X-ray photoelectron spectroscopy

Compound	Oxidation state	2p _{3/2} (eV)	2p _{1/2} (eV)	2p _{3/2} S (eV)	2p _{1/2} S (eV)	Ref
Ni doped CuO	Cu^{2+}	933.15	953.5	941.8	961.5	1
Cu ₂ O	Cu^{1+}	932.0	951.8	NA ^a	NA ^a	2
CuO	Cu ²⁺	933.8	-	-	-	3
Cuo	Cu ¹⁺	932.8	-	-	-	
CuO	Cu ²⁺	933.3	953.2	942	962	4
CuO	Cu ²⁺	933.8	-	-	-	5
Cuo	Cu ¹⁺	932.6	-	-	-	
CuO	Cu ²⁺	933.6	-	-	-	6
CuO	Cu^{1+}	932.4	-	-	-	
C++O	Cu ²⁺	933.9	953.9	-	-	7
CuO	Cu^{1+}	932.3	952.2	-	-	
	Cu ²⁺	933.03	954.23	938.68	960.65	Present
(Co,Cu,Mg,Na,N1,Zn)O	Cu^{1+}	932.46	952.03	-	-	work

Table S5 Binding energies of Cu used for assignment of oxidation states

^a Values mentioned as *NA is respective peak does not exist for the particular oxidation state.

Table S6 Binding energies of Zn used for assignment of oxidation states

Compound	Oxidation state	2p _{3/2} (eV)	2p _{1/2} (eV)	Ref
ZnO	Zn^{2+}	1021.8	1044.9	8
ZnO	Zn^{2+}	1022.40	-	9
ZnO	Zn^{2+}	1021.5	-	10
ZnO	Zn^{2+}	1022	1045	11
(Co,Cu,Mg,Na,Ni,Zn)O	Zn^{2+}	1020.36	1043.37	Present work

Table S7 Binding energies of O used for assignment of position of O in the lattice

Compound	O lattice (eV)	O deficiency (eV)	O adsorbed (eV)	Ref
ZnO	530.2	531.8	533.4	12
Al doped ZnO	530.15	531.25	532.40	9
ZnO	530.2	531.4	532.6	13
MgO	530.3-530.6	532.5-533.5	-	14
Co _{1-x} Na _x O	529.9	-	531.4 eV.	15
CoO	529.5	530.8	533.0	16
(Co,Cu,Mg,Na,Ni,Zn)O	530.05	531.80	533.7	Present work

Compound	Oxidation state	2p (eV)	Ref
MgO	Mg^{2+}	50.8	14
MgO	Mg^{2+}	49.3	17
MgO	Mg^{2+}	49.8	18
(Co,Cu,Mg,Na,Ni,Zn)O	Mg^{2+}	49.54	Present work

Table S8 Binding energies of Mg used for assignment of oxidation states

Table S9 Binding energies of Na used for assignment of oxidation states

Compounds	Oxidation state	2s (eV)	Ref
Na _x CoO ₂	Na ¹⁺	1071.71	19
Na doped ZnO	Na ¹⁺	1073.2	20
Co _{1-x} Na _x O	Na ¹⁺	1072	15
Na doped NiO	Na ¹⁺	1072.8	21
(Co,Cu,Mg,Na,Ni,Zn)O	Na ¹⁺	1070.89	Present work

Table S10 Binding energies of Ni used for assignment of oxidation states

Compounds	Oxidation state	2p _{3/2} (eV)	2p _{1/2} (eV)	2P _{3/2} S (eV)	$2P_{1/2}S(eV)$	Ref
NiO	Ni ²⁺	854.1	871.6	861.2	878.8/881.5	22
Co-doped NiO	Ni ²⁺	854.3	874.0			23
No Ni ToO	Ni ²⁺	854.2	-	-	-	24
$Na_2N1_2TeO_6$	Ni ³⁺	855.4	-	-	-	
Ni ₂ O ₃ .6H ₂ O	Ni ³⁺	855.1	872.7	860.9	879.3	25
Na doped NiO	Ni ²⁺	854.5	872.7	861.7	880.8	21
	Ni ³⁺	856.3	-	-	-	
NLO	Ni ²⁺	853.5	872.8	861.3	879.1	26
NIO	Ni ³⁺	855.5	-	-	-	
	Ni ²⁺	855.03	871.86	860.31	877.65	Present
(Co, Cu, Wig, Na, Ni, Zn)O	Ni ³⁺	856.39	873.52	862.45	-	work

Table S11 Binding	energies of	Co used for	assignment	of oxidation	states
			0		

Compounds	Oxidation state	2p _{3/2} (eV)	2p _{1/2} (eV)	2p _{3/2} S (eV)	2p _{1/2} S (eV)	Ref
Co-doped NiO	Co^{2+}	780	795.5	-	-	23
CoO	Co ²⁺	780.5	796.3	786.4	803.0	16
Co ₃ O ₄	Co ³⁺	779.6	794.5	789.5	804.5	16
CoO	Co ²⁺	780.6	796.8	-	-	27
Co ₃ O ₄	Co ³⁺	779.6	-	787.9	803.8	28
$(C_{0}, C_{0}, M_{0}, N_{0}, N_{0}, T_{0})$	Co ²⁺	781.72	794.14	786.04	800.48	Present
(Co, Cu, Wig, Na, Ni, Zn)O	Co ³⁺	779.73	796.26	788.82	803.27	work

Element	Oxidation state	Ionic radii (pm)	Co-ordination number	Ionic radii difference compared to Ni ²⁺
Со	+2	745	+6	7.9 %
Cu	+2	73	+6	5.7 %
Mg	+2	72	+6	4.3 %
Na	+1	102	+6	47.8 %
Ni	+2	69	+6	-
Zn	+2	74	+6	7.2 %

Table S12 Ionic radii difference of each cation as compared to Ni²⁺

References

- 1 S. Dolai, S. N. Sarangi, S. Hussain, R. Bhar and A. K. Pal, *J. Magn. Magn. Mater.*, 2019, **479**, 59–66.
- 2 L. Li, L. Xu, W. Shi and J. Guan, Int. J. Hydrogen Energy, 2013, 38, 816–822.
- 3 C. C. Chusuei, M. A. Brookshier and D. W. Goodman, *Langmuir*, 1999, **15**, 2806–2808.
- 4 A. I. Stadnichenko, A. M. Sorokin and A. I. Boronin, J. Struct. Chem., 2008, 49, 341–347.
- 5 G. Panzner, B. Egert and H. P. Schmidt, *Surf. Sci.*, 1985, **151**, 400–408.
- 6 S. Poulston, P. M. Parlett, P. Stone and M. Bowker, *Surf. Interface Anal.*, 1996, 24, 811–820.
- 7 D. Barreca, A. Gasparotto and E. Tondello, *Surf. Sci. Spectra*, 2007, **14**, 41–51.
- Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, ACS Appl. Mater. Interfaces, 2010, 2, 2915–2923.
- 9 M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, *Appl. Surf. Sci.*, 2000, **158**, 134–140.
- 10 L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, D. Leonarduzzi, C. Maragno and E. Tondello, *Surf. Sci. Spectra*, 2006, **13**, 9–16.
- 11 X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang and C. Yang, *Phys. B Condens. Matter*, 2007, **388**, 145–152.
- 12 J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang and Y. Dai, ACS Appl. Mater. Interfaces, 2012, 4, 4024–4030.
- 13 P. T. Hsieh, Y. C. Chen, K. S. Kao and C. M. Wang, *Appl. Phys. A Mater. Sci. Process.*, 2008, 90, 317–321.
- 14 J. S. Corneille, J. W. He and D. W. Goodman, *Surf. Sci.*, 1994, **306**, 269–278.
- 15 C. Chen, F. Delorme, F. Schoenstein, M. Zaghrioui, D. Flahaut, J. Allouche and F. Giovannelli, *J. Eur. Ceram. Soc.*, 2019, **39**, 346–351.
- 16 T. J. Chuang, C. R. Brundle and D. W. Rice, *Surf. Sci.*, 1976, **59**, 413–429.

- 17 F. Khairallah and A. Glisenti, *Surf. Sci. Spectra*, 2006, **13**, 58–71.
- 18 C. Ruby, B. Humbert and J. Fusy, Surf. Interface Anal., 2000, 29, 377–380.
- 19 H. Sang, G. Ho, D. Hyun and S. Ihl, *Curr. Appl. Phys.*, 2015, **15**, 412–416.
- 20 Z. Wu, Y. Li, L. Gao, S. Wang and G. Fu, *Dalt. Trans.*, 2016, **45**, 11145.
- 21 Y. Rama, K. Lee, C. Park, S. Kun, H. Jae, D. Yang and S. Seo, *Thin Solid Films*, 2015, **591**, 255–260.
- 22 A. N. Mansour, Surf. Sci. Spectra, 1994, **3**, 231–238.
- 23 Z. Zheng, L. Huang, Y. Zhou, X. Hu and X. Ni, *Solid State Sci.*, 2009, **11**, 1439–1443.
- A. Gupta, C. Buddie Mullins and J. B. Goodenough, J. Power Sources, 2013, 243, 817–821.
- A. N. Mansour and C. A. Melendres, Surf. Sci. Spectra, 1994, 3, 263–270.
- 26 X. Geng, D. Lahem, C. Zhang, C. Li, M. Olivier and M. Debliquy, *Ceram. Int.*, 2019, **45**, 4253–4261.
- 27 M. Hassel and H.-J. Freund, *Surf. Sci. Spectra*, 1996, **4**, 273–278.
- 28 G. A. Carson, M. H. Nassir and M. A. Langell, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1996, 14, 1637–1642.