Supporting Information

(Thio)(silyl)carbene and (Seleno)(silyl)carbene Gold(I)						
Complexes	from	the	Reaction	of	Bis(methy	lene)-λ ⁴ -
sulfane	and	ŀ	Bis(methyle	ene)-	λ ⁴ -selane	with
Chloro(dimethylsulfide)gold(I)						
Koh Sugamata, Yukiko Urao, and Mao Minoura						
College of Scien	ce, Depa	rtment	of Chemistry,	Rikky	o University, 3	-34-1 Nishi-

College of Science, Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 (Japan)

Table of Contents	
General Procedure	2
NMR Spectroscopic Analysis	3
UV-vis Spectroscopic Analysis	7
X-ray Crystallographic Analysis of 1 and 2	8
Computational Details	10
References	16

General Procedure

Unless otherwise noted, all experiments were performed under an argon atmosphere. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were measured in CDCl₃ on a JEOL JNM ECS-400SS spectrometer. A signal arising from residual CHCl₃ (7.26 ppm) in CDCl₃ was used as an internal standard for the ¹H NMR spectra and that of <u>C</u>DCl₃ (77.16 ppm) for the ¹³C NMR spectra. ²⁹Si NMR (79 MHz) spectra were measured in CDCl₃ using Si(CH₄)₄ (0 ppm) as an external standard. ⁷⁷Se NMR (76 MHz) spectra were measured in CDCl₃ using Me₂Se (0 ppm) as an external standard. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-T100LP (ESI) mass spectrometer. All melting points were measured on a SMP-300CT capillary melting point apparatus and are uncorrected.

Synthesis of (thio)(silyl)carbene gold(I) complex (1): A C_6H_6 solution (3 mL) of bis(methylene)- λ^4 sulfane 3 (31 mg, 0.037 mmol) at room temperature was treated with AuCl(Me₂S) (23 mg, 0.077 mmol). After stirring over 3 hours, all volatiles were removed in vacuo, and the residue was recrystalyzed from CH₂Cl₂ and Hexane to afford 1 as a red solid (35 mg, 0.031 mmol, 84 %). mp. 166 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 298 K) δ 0.31 (s, 6H), 0.76 (s, 3H), 2.62 (s, 6H), 7.20–7.43 (m, 22H), 7.46-7.48 (m, 4H), 7.65-7.68 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 298 K), δ –1.99, 0.43, 23.8, 71.8, 127.8, 127.9, 128.1, 129.3, 129.4, 130.0, 133.8, 135.4, 135.7, 136.2, 137.2, 138.1, 309.6; ²⁹Si NMR (79 MHz, CDCl₃, 298 K), δ –11.7, –12.7; Anal. (%) calcd. for C₄₃H₄₅Au₂ClS₂Si₃: C, 45.32; H, 3.98; found: C, 45.24; H, 4.02. HRMS (ESI) Calcd. for C₄₁H₃₉Au₂³⁵Cl₂SSi₃ 1111.0788 ([M–Me₂S+Cl⁻ [-); found: m/z = 1111.0763 ([M–Me₂S+Cl⁻]-). UV-vis (CHCl₃): $\lambda = 345$ nm ($\varepsilon 5800$), 490 nm ($\varepsilon 160$). Synthesis of (seleno)(silyl)carbene gold(I) complex (2): The above procedure was followed using bis(methylene)- λ^4 -selane (89 mg, 0.10 mmol) 4 instead of 3 and AuCl(Me₂S) (59 mg, 0.20 mmol). The mixture was recrystalyzed from CH_2Cl_2 and Hexane to afford 2 as a brown solid (109 mg, 0.092) mmol, 92 %). mp. 150 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 298 K) & 0.33 (s, 6H), 0.74 (s, 3H), 2.53 (s, 6H), 7.18-7.39 (m, 22H), 7.53-7.55 (m, 4H), 7.64-7.66 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 298 K), δ –1.92, 1.28, 24.0, 73.0, 127.8, 127.9, 128.1, 129.2, 129.3, 130.1, 133.6, 135.5, 135.7, 136.1, 138.2, 138.7, 344.8; ²⁹Si NMR (79 MHz, CDCl₃, 298 K), δ –10.5, –11.5; ⁷⁷Se NMR (76MHz, CDCl₃, 298 K), δ 1494, Anal. (%) Calcd. for C₄₃H₄₅Au₂ClSSeSi₃: C, 43.53; H, 3.82; found: C, 43.31; H, 3.82. HRMS (ESI) Calcd. for $C_{41}H_{39}Au_2^{35}Cl_2Si_3^{80}Se \ 1159.0233$ ([M-Me₂S+Cl⁻]⁻); found: m/z =1159.0205 ([M–Me₂S+Cl⁻]⁻). UV-vis (CHCl₃): $\lambda = 369$ nm ($\epsilon 6700$), 541 nm ($\epsilon 200$).

NMR Spectroscopic Analysis

Figure S1. ¹H NMR spectrum of 1 (400 MHz, CDCl₃, 298 K)

Figure S2. ¹³C NMR spectrum of 1 (100 MHz, CDCl₃, 298 K)

Figure S3. ²⁹Si NMR spectrum of 1 (79 MHz, CDCl₃, 298 K)

Figure S4. ¹H NMR spectrum of 2 (400 MHz, CDCl₃, 298 K)

Figure S5. ¹³C NMR spectrum of 2 (100 MHz, CDCl₃, 298 K)

Figure S6. ²⁹Si NMR spectrum of **2** (79 MHz, CDCl₃, 298 K)

Figure S7. ⁷⁷Se NMR spectrum of 2 (76 MHz, CDCl₃, 298 K)

UV-vis Spectroscopic Analysis

UV-vis spectrum of complexes 1 and 2 are shown in Figure S8. Complex 2 exhibited the longest absorption maximum at $\lambda_{max} = 541$ nm, which is bathochromically shifted compared to that of complex 1 ($\lambda_{max} = 490$ nm). TD-DFT calculations on 1 and 2 (1: $\lambda_{calcd} = 498$ nm, f = 0.0003; 2: $\lambda_{calcd} = 527$ nm, f = 0.0001), indicating that the HOMO-LUMO energy gap of 2 should slightly decrease compared to that of 1. The HOMOs of 1 and 2 are dominantly composed of the d_z orbitals in Au, while the LUMOs should be formed by the π^* orbitals of C-Ch bonds as shown in Figure S13.

Figure S8. UV-Vis spectra of 1 and 2 in $CHCl_3$ (1.0 x 10⁻⁵ M).

X-ray Crystallographic Analysis of 1 and 2

Single crystals of **1** and **2** were grown by slow recrystallization of the Hexane and CH_2Cl_2 solutions at room temperature. The structures were solved by a direct method $(SHELXT)^{[S1]}$ and refined by full-matrix least square method on F² for all reflections $(SHELXL-2016)^{[S2]}$ All hydrogen atoms were placed using AFIX instructions, while the other atoms were refined anisotropically. The supplementary crystallographic information for this paper has been deposited at The Cambridge Crystallographic Data Centre (CCDC) under the reference numbers CCDC-1985438 (**1**) and CCDC-1985439 (**2**).

	1	•
	1	2
empirical formula	$C_{43}H_{45}Au_2ClS_2Si_3$	C ₄₃ H ₄₅ Au ₂ ClSSeSi ₃
formula weight	1139.56	1186.46
color	red	brown
crystal system	Triclinic	Triclinic
space group	<i>P</i> -1(#2)	<i>P</i> -1(#2)
unit-cell dimentions		
a(Å)	10.5587(1)	10.7306(2)
$b(\text{\AA})$	12.7258(1)	12.7719(3)
$c(\text{\AA})$	16.3375(2)	16.3141(3)
$\alpha(^{\circ})$	96.606(1)	96.455(2)
$\beta(^{\circ})$	107.201(1)	107.896(2)
χ(°)	93.562(1)	93.832(2)
$V(Å^3)$	2072.41(4)	2101.99(8)
Ζ	2	2
$D(g/cm^3)$	1.826	1.875
independent reflections	9492	9612
parameters	465	465
<i>R</i> 1, <i>wR</i> 2	0.0208, 0.0562	0.0191, 0.0550
goodness-of-fit on F^2	1.068	1.053
CCDC	1985438	1985439

 Table S1 Crystal data and data collections of 1 and 2.

Figure S9. Shortest intermolecular interaction of 1.

Figure S10. Shortest intermolecular interaction of 2.

Computational Details

All calculations were performed using the Gaussian 09 suite of programs, revision E 01.^[S3] The geometry optimization and harmonic vibration frequency calculations of **1** and **2** were performed in DFT method at B3PW91/6-311G(2d,p) level of theory. The frequency calculations confirmed minimum energies for the optimized structures. The optimized geometries of **1** and **2** are shown in Figure S11 and S12, respectively, and the selected optimized structural parameters are given in Table S1. Optimized structures are provided as a xyz file.

Figure S11. Calculated geometry for **1** at B3PW91/6-311G(2d,p) level. For the comparison of the structural parameters obtained experimentally with those calculated, see Table S2.

	Experimental values (Å, deg)	Calculated values (Å, deg)
C1-S	1.627(3)	1.633
C2-S	1.775(3)	1.800
C1-Si1	1.893(3)	1.913
C2-Si2	1.898(3)	1.921
C2-Si3	1.898(3)	1.929
Au1-C1	1.973(3)	1.981

Table S2. The bond parameters of the experimental and calculated values for 1.

Au1-Cl	2.2889(7)	2.338
Au2-C2	2.090(3)	2.093
S-C1-Si	114.5(2)	113.81
C1-Au1-Cl	176.29(8)	177.96
C2-Au2-S2	176.05(7)	176.00
Au1-Au2	2.9795(1)	3.153

Figure S12. Calculated geometry for **2** at B3PW91/6-311G(2d,p) level. For the comparison of the structural parameters obtained experimentally with those calculated, see Table S3.

	Experimental values (Å, deg)	Calculated values(Å, deg)
C1-Se	1.782(2)	1.783
C2-Se	1.944(2)	1.964
C1-Si1	1.902(2)	1.910
C2-Si2	1.891(2)	1.913
C2-Si3	1.895(2)	1.920
Au1-C1	1.955(2)	1.973
Au1-Cl	2.2933(6)	2.336
Au2-C2	2.083(2)	2.085

 Table S3. The bond parameters of the experimental and calculated values for 2.

Se-C1-Si	113.2(1)	113.93
C1-Au1-Cl	175.52(6)	177.16
C2-Au2-S	174.40(6)	175.00
Au1-Au2	3.0194(1)	3.203

Figure S13. Frontier molecular orbitals of a) 1 and b) 2.

Figure S14. HOMO (AuCl(SMe₂)) – LUMO (C=Ch=C) interactions of C=Ch=C and AuCl(SMe₂)

a)

b)

Figure S15. Calculated geometry for 5_s a) Singlet state b) triplet state at B3PW91/6-311G(2d,p) level.

Figure S16. Calculated geometry for 5_s a) Singlet state b) triplet state at B3PW91/6-311G(2d,p) level.

References

[S1] Sheldrick, G. M. Acta Crystallogr. Sect. A, 2015, 71, 3-8.

[S2] Sheldrick, G. M. Acta Crystallogr. Sect. C, 2015, 71, 3-8.

[S3] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.