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Figure S1a: 1H-NMR spectrum of H1 in d2-DCM*. 

 

 
Figure S1b: 1H-NMR spectrum of d1-H1 in d2-DCM*. 

 

 
Figure S2a: 31P{1H}-NMR spectrum of H1 in d2-DCM. 
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Figure S2b: 31P{1H}-NMR spectrum of a mixture of K[1] and H1 in DCM. 

 

 
Figure S2c: 31P{1H}-NMR spectra of (1) H1 and (2) K[1] in DCM. 
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Figure S3: ATR-FTIR spectrum of H1. 

 

 

 
Figure S4: ATR-FTIR spectrum of a mixture of H1 and d1-H1. 
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Figure S5: DFT computed structure of H1; H-atoms attached to carbon not shown for clarity. 

 

 

 

 
Figure S6: 31P{1H}-NMR spectrum of H1+MeCN in DCM. 

 



S6 
 

3600 2700 1800 900

0.7

0.8

0.9

1.0
T

ra
n

s
m

it
ta

n
c
e

Wavenumber (cm
-1
)

 
Figure S7: ATR-FTIR spectrum of H1+MeCN. 

 

 
Figure S8: 31P{1H}-NMR spectrum of Me3Si1 in hexane. 
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Figure S9: ATR-FTIR spectrum of Me3Si1. 

 

 

 

 
Figure S10a: 31P{1H}-NMR spectrum of the reaction mixture of H1 + TEMPO in d8-toluene.  

 

 

 
Figure S10b: 1H-NMR spectrum of the reaction mixture of H1 + TEMPO in d8-toluene. 
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Figure S10c: ATR-FTIR spectrum of the reaction mixture of H1 + TEMPO. Peaks corresponding to H1+CO is marked 

‘a’ and the peaks corresponding to MnII[1] is marked ‘b’.1 

 

 
Figure S11a: 31P{1H}-NMR spectrum of H1 (1) before and (2) after the addition of DBU in DCM, with an internal 

standard (capillary insert) of H3PO4 in D2O. 
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Figure S11b: ATR-FTIR spectra of the reaction mixture of H1 + DBU (red), K[1] (blue) and PPN[1] (green). 
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Figure S12: 31P{1H}-NMR spectrum of K[1] (1) before and (2) after the addition of [PPN]Cl in DCM, with an 

internal standard (capillary insert) of H3PO4 in D2O. 
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Figure S13: 31P{1H}-NMR spectrum of H1 (1) before and (2) after the addition of TMG in DCM, with an internal 

standard (capillary insert) of H3PO4 in D2O.  

 

 

  
Figure S14: ATR-FTIR spectra of the reaction mixture of H1 + TMG (red) and H1 (blue). 
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Figure S15: A plot of current (I) vs. square root of scan rate (ν) (left) and a plot of current/sqrt(scan rate) vs. potential 

(right) of 0.001 M K[1] in MeCN. Experimental conditions; 0.1 M [Bu4N][PF6], glassy carbon working electrode, 

Ag/AgNO3 reference electrode with a CoralPorTM separator, and platinum auxiliary electrode. Scan direction anodic. 

 

 

 
Figure S16: X-band EPR spectrum (77 K) of a reaction of K[1] with [NO][BF4].  

 

EPR methods: To a solution of K[1] (30 mg, 0.03 mmol, 1 eq.) in 1 mL DCM was added [NO][BF4] (4 mg, 0.03 

mmol, 1 eq.). The reaction was stirred vigorously for 10 min during which the solution turned green. The green 

solution was frozen in liquid nitrogen and an EPR spectrum was collected at 77K. The reported EPR spectrum was 

acquired on a Bruker EMX 390 spectrometer. Microwave frequency = 9.437 GHz, experimental range = 1850 to 4850 

G, mod amp = 0.4 G, attenuation = 25 dB, scans = 12, time constant = 40. The EasySpin2 software package was used 

to perform least-squares refinement of the experimental data. Simulation Parameters: spin = 5/2, nucleus = Mn, g = 

1.9946, 2.0108, A = 302.7533, 0.0296 MHz, line broadening (Voigtian) = 35 MHz (Gaussian contribution) and 75 

MHz (Lorentzian contribution), fitting technique: Nelder/Mead Simplex. 
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Figure S17: Mulliken spin density (green +/-) for the compounds H1, H1’, and H1+CO minus a H-atom (isovalue 

0.02). 

 

Table S1. Mulliken spin density on selected atoms for H1, H1’, and H1+CO minus a H-atom  

 spin density on Mn spin density on semiquinone 
H1 minus H-atom 0.96 0.03 

H1’ minus H-atom 0.03 0.95 
H1+CO minus H-atom 0.003 0.96 

 

The spin density of the three computed doublet compounds resulting in loss of H-atom indicate a disparate metal vs. 

ligand radical character. The loss of an H-atom from the 18-e– isomer of H1 results in a metallo-radical, whereas loss 

of an H-atom from the 16-e– isomer H1’, or the 18-e– complex H1+CO, results in the formation of a ligand-based 

radical. Unfortunately, experimental evidence of a LS Mn(II) species to corroborate these computational findings have 

so far been unsuccessful. 

 

 

X-ray Crystallography 

Low-temperature X-ray diffraction data for H1+MeCN (Rlacy29) and H1 (Rlacy36) were collected on a Rigaku 

XtaLAB Synergy diffractometer coupled to a Rigaku Hypix detector with Cu Kα radiation (λ = 1.54184 Å), from a 

PhotonJet micro-focus X-ray source at 100 K and 253K, respectively. The diffraction images were processed and 

scaled using the CrysAlisPro software.3 The structures were solved through intrinsic phasing using SHELXT4 and 

refined against F2 on all data by full-matrix least squares with SHELXL5 following established refinement strategies.6 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms bound to carbon were included in the model 

at geometrically calculated positions and refined using a riding model. Hydrogen atoms bound to oxygen were located 

in the difference Fourier synthesis and subsequently refined semi-freely with the help of distance restraints. The 

isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the Ueq value of the atoms they are 

linked to (1.5 times for methyl groups). H1+MeCN (Rlacy29) contains disordered solvent molecules of CH2Cl2 that 

were included in the unit cell but could not be satisfactorily modeled. Therefore, those solvents were treated as diffuse 

contributions to the overall scattering without specific atom positions using the solvent mask routine in Olex2.7 
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