Supplementary Information for A novel self-assembled derived 1D MnO₂@Co₃O₄ composite as high-performence Li-ion storage anode materials

ZongtangLi¹,XiaoLian*¹,Mingzai Wu²,FangcaiZheng³,YuanhaoGao⁴andHelinNiu*¹

¹Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Energy materials and devices key lab of Anhui Province for photoelectric conversion, College of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China

²School of Physics and Materials Science, Anhui University, Hefei 230039, China

³Institutes of Physical Science and information Technology, AnhuiUniversity, Hefei 230039, China

⁴Key Lab Micronano Mat Energy Storage, Xuchang University, Xuchang 461000, China

CONTENTS

Fig. S1. TGA curves of (a) MnOOH, (b) ZIF-67.

Fig. S2. XRD patterns of ZIF-67, MnOOH and MnOOH@ZIF-67

Fig. S3. FT-IR spectrum of MnOOH@ZIF-67 and ZIF-67.

Fig. S4. XPS spectrum of MnOOH@ZIF-67. (a) survey spectrum of

MnOOH@ZIF-67, (b) Mn 2p, (c) Co2p.

Fig. S5. H₂-TPR profiles of MnO₂@Co₃O₄.

Fig. S6. Raman spectrum of MnO₂@Co₃O₄, MnO₂ and Co₃O₄.

Table S1. Electrochemical impedance parameters of the MnO₂@Co₃O₄.

 Table S2. Comparison of electrochemical properties of various cobalt-manganese oxides.

Fig. S1. TGA curves of (a) MnOOH, (b) ZIF-67.

Fig. S3. FT-IR spectrum of MnOOH@ZIF-67 and ZIF-67.

Fig. S4. XPS spectrum of MnOOH@ZIF-67. (a) survey spectrum of MnOOH@ZIF-67, (b) Mn 2p, (c) Co2p.

Fig. S5. H2-TPR profiles of MnO₂@Co₃O₄.

Fig. S6. Raman spectrum of MnO₂@Co₃O₄, MnO₂ and Co₃O₄.

Table S1. Electrochemical impedance parameters of the MnO₂@Co₃O₄

Rs(Ω)	$\operatorname{Rct}(\Omega)$	$Zw(\Omega)$
1.816	94.99	4.867E-3

Table S2.Comparison of electrochemical properties of various cobalt-manganese oxides

Material	Current density(mAg ⁻¹)	2 nd cycle discharge capacity(mAhg ⁻¹)	Discharge capacity(mAhg ⁻ ¹)/Number of cycles	Refence
mesoporous β -MnO ₂	250	1400	350(100cycles)	5
Co-Co ₃ O ₄ @CNTs	500	≈700	913.3(100cycles)	23
3D Co ₃ O ₄ @MnO ₂	120	≈1350	924(100cycles)	40
MnO ₂ -Co ₃ O ₄ -RGO	500	≈590	577.4(500cycles)	41
MnO ₂ /Co ₃ O ₄	2000	≈600	581.8(1100cycles)	42
(Co,Mn)(Co,Mn) ₂ O ₄ /Co ₃ O ₄ / MnO	1000	969.2	2175.8(1000cycles)	43
1D MnO ₂ @Co ₃ O ₄	2000	1016.2	647.4(400cycles)	This work