# **Supporting Information**

Using single ammonium acidic salt towards simple green co-precipitation synthesis for Mn<sup>4+</sup>-activated fluorides

T. T. Deng<sup>a, b, \*</sup>, E.H. Song<sup>b</sup>, Y. Y. Zhou<sup>b</sup>, J. Y. Chen<sup>a</sup>, Y. F. Cheng<sup>a</sup>, J. Yuan<sup>a</sup>, T. Fan<sup>a</sup>

<sup>a</sup>School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China

<sup>b</sup>State Key Laboratory of Luminescent Materials and Devices and Institute of Optical

Communication Materials, South China University of Technology, Guangzhou 510640, China

\* Corresponding Author.

Email: tingtingdeng0803@163.com

## Synthesis of Cs<sub>2</sub>MnF<sub>6</sub> precursor

Here, novel  $Cs_2MnF_6$  was particularly prepared as precursor via co-precipitation reaction on  $K_2MnF_6$  and CsF. Specifically, 5 mmol  $K_2MnF_6$  (followed Bode's method)<sup>1</sup> was dissolved in 10 mL of HF solution with continuous stirring, then 50 mmol CsF was slow added into above solution following with bright yellow precipitate of  $Cs_2MnF_6$ formed. The product was filtrated, washed with ethanol several times, and dried at 70 °C for 6 h. The X-ray powder diffraction measurement demonstrates the phase purity of  $Cs_2MnF_6$  (Fig. S1a). Under blue light excitation, it presents red line emission as those of  $Mn^{4+}$ -activated fluorides (Fig. S1b). Notice that protection suit was needed during experimental process for human-security; meanwhile, centrifugal tubes were used as reactor to reduce the volatilization of HF.



Fig. S1 XRD patterns of K<sub>2</sub>MnF<sub>6</sub> and Cs<sub>2</sub>MnF<sub>6</sub>.



Fig. S2 (a) XRD patterns and (b) emission spectra of  $A_2SiF_6:Mn^{4+}$  (A = K, Rb, Cs) samples prepared under near-saturated NH<sub>4</sub>HF<sub>2</sub> solution.



**Fig. S3** (a) XRD patterns and (b) emission spectra of  $A_2GeF_6:Mn^{4+}$  (A = K, Rb, Cs) samples prepared under NH<sub>4</sub>HF<sub>2</sub> solution.



**Fig. S4** (a) (i) GeO<sub>2</sub> disperses in the 0.946 g·mol<sup>-1</sup> NH<sub>4</sub>HF<sub>2</sub> solution; Cs<sub>2</sub>GeF<sub>6</sub>:Mn<sup>4+</sup> was prepared in (ii) 1.420 g·mol<sup>-1</sup> and (iii) 2.839 g·mol<sup>-1</sup> NH<sub>4</sub>HF<sub>2</sub> solution, respectively; (b) digital images of Cs<sub>2</sub>GeF<sub>6</sub>:Mn<sup>4+</sup> reaction solutions using different synthetic strategies.



Fig. S5 Digital images of  $Cs_2GeF_6:Mn^{4+}$  reaction solutions under HF solution coexisting with HAc or  $H_3PO_4$  addition.



Fig. S6 XRD patterns of Cs<sub>2</sub>GeF<sub>6</sub>:Mn<sup>4+</sup> samples synthesized using strategies C5-C6.



Fig. S7 The crystal structure of Cs<sub>2</sub>GeF<sub>6</sub> from ICSD 35547.



Fig. S8 The luminescence decay curves of  $Cs_2GeF_6:Mn^{4+}$  phosphors synthesized using strategies C1-C4.



**Fig. S9** Digital images of samples C1-C4 soaked in water with the same mass concentration after (a) 2 min and (b)10 min. (dry samples were conserved for six months)

| Reagent                                          | Amount/g | Valuma of C/mI | Saturation                         |
|--------------------------------------------------|----------|----------------|------------------------------------|
|                                                  |          | volume of 5/mL | concentration /mol·L <sup>-1</sup> |
| H <sub>2</sub> SiO <sub>3</sub>                  | 3.121    |                | 0.400                              |
| GeO <sub>2</sub>                                 | 5.588    |                | 0.534                              |
| TeO <sub>2</sub>                                 | 7.983    |                | 0.500                              |
| (NH <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub> | 12.825   | 100            | 0.720                              |
| (NH <sub>4</sub> ) <sub>2</sub> TiF <sub>6</sub> | 10.926   |                | 0.552                              |
| $(NH_4)_2 ZrF_6$                                 | 4.825    |                | 0.200                              |
| K <sub>2</sub> TiF <sub>6</sub>                  | 6.020    |                | 0.250                              |

Table S1 The maximum solubility of some reagents in near-saturated  $NH_4HF_2$  (S) solution.

Table S2 The near-saturated solutions by using various acidic salts.

| strategy | acidic salt                                    | dose of acidic salt<br>(mmol) | dose of H <sub>2</sub> O (mL) | рН      |
|----------|------------------------------------------------|-------------------------------|-------------------------------|---------|
| R1       | NaHF <sub>2</sub>                              | 15                            |                               | 2.5~3.0 |
| R2       | KHF <sub>2</sub>                               | 15                            | 20                            | 2.5~3.0 |
| R3       | NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> | 25                            | 30                            | 5.0~5.4 |
| R4       | KH <sub>2</sub> PO <sub>4</sub>                | 25                            |                               | 5.0~5.4 |

Table S3 QEs of  $Cs_2GeF_6$ :  $Mn^{4+}$  phosphors synthesized under different strategies.

| Sample | IQE  | EQE  |
|--------|------|------|
| C1     | 93.3 | 71.1 |
| C2     | 84.2 | 56.4 |
| C3     | 79.6 | 48.1 |
| C4     | 70.1 | 41.7 |

| Mole ratio of Cs <sub>2</sub> MnF <sub>6</sub> to GeO <sub>2</sub> | Mn <sup>4+</sup> concentration (at%) |
|--------------------------------------------------------------------|--------------------------------------|
| 2:100                                                              | 1.53                                 |
| 4:100                                                              | 3.65                                 |
| 6:100                                                              | 5.34                                 |
| 8:100                                                              | 7.86                                 |
| 10:100                                                             | 9.25                                 |
| 12:100                                                             | 10.42                                |

**Table S4** ICP results of Mn<sup>4+</sup> actual doped concentration of Cs<sub>2</sub>GeF<sub>6</sub>:Mn<sup>4+</sup> phosphors.

### **Parameters**

# **Color purity**

The color purity is an important parameter to evaluate the color-quality of narrow-band luminescent materials, which can be calculated by using the expression as follow: [2]

$$color purity = \frac{\sqrt{(x - x_i)^2 + (y - y_i)^2}}{\sqrt{(x_d - x_i)^2 + (y_d - y_i)^2}} \times 100\%$$
(1)

where (x, y),  $(x_i, y_i)$  and  $(x_d, y_d)$  are color coordinates of present phosphor, equal-energy illuminant and the dominant wavelength of light source, respectively.

## Chromaticity shift ( $\Delta E$ )

The chromaticity shift ( $\Delta E$ ) is a specific parameter to describe the color fluctuations of luminescent materials aroused by increasing temperature. It can be calculated according to the equation below: [3]

$$\Delta E = \sqrt{\left(u_{t}^{'} - u_{0}^{'}\right)^{2} + \left(v_{t}^{'} - v_{0}^{'}\right)^{2} + \left(w_{t}^{'} - w_{0}^{'}\right)^{2}}$$
(2)

where u' = 4x/(3 - 2x + 12y), v' = 9y/(3 - 2x + 12y), and w' = 1 - u' - v'. x and y are the chromaticity coordinates in CIE 1931, u' and v' are the chromaticity coordinates in u'v'

uniform color space, and 0 and t are the chromaticity shift at 25 °C and a given temperature, respectively.

# References

1. H. Bode, H. Jenssen, F. Bandte, Angew. Chem., 1953 65, 304-304.

2. E. F. Schubert, Light emitting diodes, Cambridge University Press, 2nd edn, 2006.

3. C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, W. H. Cheng, *IEEE J. Disp. Technol.*, 2013, 9, 427-432.