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Preparation of the PVA/KOH gel electrolyte 

The PVA/KOH gel electrolyte was prepared using mixing 500 mg poly (vinyl alcohol) 

(PVA) powder with 500 mg KOH in 5ml DI water and mixed at 60˚ for 60 min, while 

continuously stirring until it took on a clear appearance and homogeneous viscous.

1

Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2020

http://dx.doi.org/10.1039/C9TA08677C
http://dx.doi.org/10.1039/C9TA08677C
http://dx.doi.org/10.1039/C9TA08677C
mailto:ss-hosseiny@sbu.ac.ir
mailto:ss-hosseiny@sbu.ac.ir


Fig. S1. XRD pattern of the Cu-Co-Ni MOF precursor.

Fig. S2. Survey spectrum of the CCNP-NA sample.
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Fig. S3. (a-c) FE-SEM images of the Cu-Co-Ni-MOF precursor.
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Fig. S4. (a, b) FE-SEM images of the Cu-Co-Ni-oxide.
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Fig. S5. (a, b) TEM images of the Cu-Co-Ni-MOF precursor.
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Fig. S6. (a, b) TEM images of the Cu-Co-Ni-oxide.
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Fig. S7. EDAX analysis of CCNP-NA.

Based on the weight of Cu (34.39 wt%) and P (18.37 wt%) elements, the content of Cu3P in the 

CuCoNi-P is calculated as about 40.51 wt% (34.39 wt% + 18.37/3 wt%), the content of CoP in 

the CuCoNi-P is calculated as about 24.66 wt% (18.54 wt% + 18.37/3 wt%), and the content of 

Ni2P in the CuCoNi-P is calculated as about 34.83 wt% (28.7 wt% + 18.37/3 wt%).

Fig. S8. CV curves of Cu3P, NiCo-P and CuCoNi-P electrodes at scan rate of 30 mV s-1.
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Fig. S9. (a) CV curves of the Cu3P electrode at various scan rates. (b) CV curves of the NiCo-P electrode 
various scan rates
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Fig. S10. (a) GCD plots of the Cu3P electrode at various current densities. (b) GCD plots of the NiCo-P 
electrode at various current densities
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Fig. S11. (a) Rate capability of the Cu3P electrode. (b) Rate capability of the NiCo-P electrode.

Fig. S12. Nyquist graph of the Cu3P, NiCoP, and CuCoNi-P electrodes.
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Fig. S13. Nyquist graph of the CuCoNi-P electrode before and after cycling.

Fig. S14. XRD pattern of the Cu-Co-Ni-P after cycling test
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Fig. S15. (a and b) FE-SEM and TEM images of the Cu-Co-Ni-P after cycling test.
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Fig. S16. (a) Durability test of the Cu3P electrode. (b) Durability test of the NiCo-P electrode.
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Fig. S17. XRD pattern of the CFS-NA after cycling test.

200 nm

a

40 nm

b

Fig. S18. (a and b) FE-SEM and TEM images of the CFS-NA after cycling test.
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Fig. S19. CV curves of the device at various potential windows.

Fig. S20. CV plots of the device with various bending angles.
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Fig. S21. Nyquist graphs of the device before and after cycling test.
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Table S1. Comparison of the electrochemical performance of positive electrode in three and two 
electrode systems with other previously reported electrodes
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Composition Capacity 3 and 2 
electrodes (mAh g-1)

Cycles, retention 2 
and 3 electrode

ED (W h kg-1) 2 
Electrode

Reference

NiMn-1 385.6 at .68 A g-1 (3 
E)

59.7 at .47 A g-1 (2 
E)

3000, 95.6% (3 E)

5000, 85.3% (2 E)

51.5 1

NiCo2S4 301.1 at 2 A g-1 (3 
E)

80.56 at 1 A g-1 (2 
E)

5000, 93.85% (2 E) 48.65 2

MnCo2O4.5@Ni(OH)2 318 at 3 A g-1 (3 E)

70.67 at 1 A g-1 (2 
E)

5000, 87.7% (3 E

3000, 90.4% (2 E)

56.53 3

Ni-MOF 123.5 at 1 A g-1 (3 
E)

3000, 90.6% (2 E) 55.8 4

Co3O4 209 at 1 A g-1 (3 E) 3000, 90 (3 E) 41.4 5

NiCo2O4 130 at .63 A g-1 (3 
E)

100, 100 (3 E) 16.6 6

NiO 119.7 at 2 A g-1 (3 
E)

28.3 at 2 A g-1 (2 E)

5000, 84.2% (3 E)

5000, 85.2% (2 E)

48 7

Co-Cd-Se 192 (3 E) at 1 A g-1

85 (2 E) at 1 A g-1

1000, 95.2% (3 E)

1000, 80.9% (2 E)

57.6 8

ZnCo2O4 78.89 at 1 A g-1 (3 
E)

34.7 at .2 A g-1 (2 E)

27.78 9

Co3O4/Co(OH)2 184.9 at 1 A g-1 (3 
E)

58.9 4 A g-1 (2 E)

5000, 90% (3 E)

5000, 91% (2 E)

37.6 10

NiCo2S4@Ni(OH)2 404.2 at 2 A g-1 (3 
E)

5000, 90% (3 E)

6000, 97% (2 E)

83 11
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