Supporting Information

Theoretical Rationalization for the Equilibrium between $(\mu - \eta^2 : \eta^2 - Peroxido)Cu^{II}Cu^{II}$ and $Bis(\mu - oxido)Cu^{III}Cu^{III}$ Complexes: Perturbational Effects from Ligand Frameworks

Tsukasa Abe,^a Yoshihito Shiota,^a Shinobu Itoh^b and Kazunari Yoshizawa*^a

^aInstitute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

^bDepartment of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

* To whom all correspondence should be addressed (e-mail: kazunari@ms.ifoc.kyushu-u.ac.jp).

Table of Contents

Fig. S1	Plots of the calculated energy differences between the $(\mu - \eta^2: \eta^2 - \text{peroxido})\text{Cu}^{II}\text{Cu}^{II}$ 1 and the bis $(\mu - \text{oxido})\text{Cu}^{III}\text{Cu}^{III}$ complex 2 in La and Lb ligand systems along with the ratio of the Hartree–Fock exchange in the functionals with Grimme's dispersion correction (D3).
Fig. S2	Calculated energy differences between the $(\mu - \eta^2: \eta^2 - \text{peroxido})\text{Cu}^{\text{II}}\text{Cu}^{\text{II}}$ 1 and the bis $(\mu - \text{oxido})\text{Cu}^{\text{III}}\text{Cu}^{\text{III}}$ complex 2 in (A) La and (B) Lb ligand systems using the B3LYP* functional without Grimme's dispersion correction (D3).
Fig. 83	(A) Schematic representation of the bonding and antibonding orbitals consisting of the d_{Ax2-y2} and d_{Bx2-y2} orbitals of the Cu^{II} ions and the lone pair orbitals of the N2 and N3 (N5 and N6) atoms in 1a . (B) Walsh diagram of the bonding and antibonding orbitals consisting of the d_{Ax2-y2} and d_{Bx2-y2} orbitals of the Cu^{II} ions and the lone pair orbitals of the N2 and N3 (N5 and N6) atoms as a function of the N2–N3 (N5–N6) distance in 1a .
Fig. S4	Plots of energy gaps between the σ^* and d_{Ax2-y2} orbitals along the distance of the diamine framework N2–N3 (N5–N6) in 1a .
Fig. S5	Plots of the O1–O2 bond distance along the distance of the diamine framework N2–N3 (N5–N6) in 1a .
Fig. S6	Plots of Mayer bond order of the O1–O2 bond along the distance of the diamine framework N2–N3 (N5–N6) in 1a .
Fig. S 7	Plots of energy gaps between the $d_{Ax2-y2} - \sigma^*$ and $d_{x2-y2} + \sigma^*$ orbitals along the distance of the diamine framework N2–N3 (N5–N6) in 2a .
Table S1	Cartesian coordinates of $[Cu^{II}_2(La)_2(O_2^{2-})]^{2+}$ (1a) in the open-shell singlet state.
Table S2	Cartesian coordinates of $[Cu^{III}_2(La)_2(O^{2-})_2]^{2+}$ (2a) in the closed-shell singlet state.
Table S3	Cartesian coordinates of $[Cu^{II}_2(\mathbf{Lb})_2(O_2^{2-})]^{2+}$ (1b) in the open-shell

Table S4singlet state.Table singlet state.Cartesian coordinates of $[Cu^{III}_2(Lb)_2(O^{2-})_2]^{2+}$ (2b) in the closed-shell
singlet state.

Fig. S1 Plots of the calculated energy differences between the $(\mu - \eta^2: \eta^2 - \text{peroxido})Cu^{II}Cu^{II}$ **1** and the bis $(\mu - \text{oxido})Cu^{III}Cu^{III}$ complex **2** in **La** and **Lb** ligand systems along with the ratio of the Hartree–Fock exchange in the functionals with Grimme's dispersion correction (D3). A dotted line stands for the equal of the energies of **1** and **2**.

Fig. S2 Calculated energy differences between the $(\mu - \eta^2: \eta^2 - \text{peroxido})Cu^{II}Cu^{II}$ **1** and the bis $(\mu - \text{oxido})Cu^{III}Cu^{III}$ complex **2** in (A) **La** and (B) **Lb** ligand systems using the B3LYP* functional without Grimmie's dispersion correction (D3).

Fig. S3 (A) Schematic representation of the bonding and antibonding orbitals consisting of the d_{Ax2-y2} and d_{Bx2-y2} orbitals of the Cu^{II} ions and the lone pair orbitals of the N2 and N3 (N5 and N6) atoms in **1a**. (B) Walsh diagram of the bonding and antibonding orbitals consisting of the d_{Ax2-y2} and d_{Bx2-y2} orbitals of the Cu^{II} ions and the lone pair orbitals of the N2 and N3 (N5 and N6) atoms as a function of the N2–N3 (N5–N6) distance in **1a**.

Fig. S4 Plots of energy gaps between the σ^* and d_{Ax2-y2} orbitals along the distance of the diamine framework N2–N3 (N5–N6) in **1a**.

Fig. S5 Plots of the O1–O2 bond distance along the distance of the diamine framework N2–N3 (N5–N6) in **1a**.

Fig. S6 Plots of Mayer bond order of the O1–O2 bond along the distance of the diamine framework N2–N3 (N5–N6) in **1a**.

Fig. S7 Plots of the energy gaps between the $d_{Ax2-y2} - \sigma^*$ and $d_{x2-y2} + \sigma^*$ orbitals along the distance of the diamine framework N2–N3 (N5–N6) in **2a**.

Atom Coordinates (Angstroms)			
	Х	Y	Ζ
С	3.836724	-2.437300	1.085554
С	-2.473578	2.600847	-1.391218
С	4.583853	-2.516439	-0.250147
С	-2.792833	3.243597	-0.036815
Η	4.549284	-2.589620	1.912764
Н	-3.108032	3.053445	-2.170275
С	3.681758	-2.641636	-1.481703
С	-1.788678	2.932306	1.077386
Н	5.305041	-1.698502	-0.362748
Н	-3.820883	3.034114	0.280167
Н	5.186392	-3.433480	-0.210319
Н	-2.752661	4.329278	-0.196802
Ν	2.908850	-1.410941	-1.830212
Ν	-1.789876	1.518928	1.561436
Н	4.289790	-2.931974	-2.354227
Н	-1.978509	3.598228	1.935445
Н	2.948487	-3.439422	-1.306598
Н	-0.776191	3.144616	0.711467
С	3.812832	-0.337559	-2.317633
С	-3.039617	1.206495	2.300777
С	1.944431	-1.749428	-2.913010
С	-0.637467	1.337295	2.482077
Ν	3.078311	-1.169682	1.339751
Ν	-2.628541	1.111280	-1.460579
Η	3.104994	-3.253822	1.123967
Η	-1.431465	2.825919	-1.645528
Н	3.214418	0.526773	-2.617945

Table S1 Cartesian coordinates of $[Cu^{II}_2(La)_2(O_2^{2-})]^{2+}(1a)$ in the open-shell singlet state.

Η	-2.998062	0.171526	2.652561
Η	4.492023	-0.017558	-1.524468
Η	-3.907843	1.305151	1.645762
Η	4.402592	-0.688202	-3.178459
Η	-3.162362	1.881329	3.162118
Η	1.377930	-0.854417	-3.187771
Η	-0.643605	0.314939	2.870373
Η	2.474720	-2.131598	-3.798957
Η	-0.693039	2.047222	3.321795
Η	1.239630	-2.501836	-2.548437
Η	0.291677	1.492018	1.928525
С	2.239787	-1.381351	2.551897
С	-2.073248	0.646176	-2.762825
С	4.043664	-0.046315	1.558658
С	-4.084186	0.767833	-1.365281
Η	1.615415	-0.505914	2.736368
Η	-2.042147	-0.445248	-2.791234
Η	1.574056	-2.231155	2.377625
Η	-1.047364	1.010096	-2.861521
Η	2.869576	-1.576092	3.433470
Η	-2.674762	1.024435	-3.603391
С	3.444771	1.320402	1.919389
С	-4.455802	-0.713388	-1.511056
Η	4.726510	-0.339990	2.372371
Η	-4.613093	1.329557	-2.152137
Η	4.641995	0.060570	0.649547
Η	-4.452009	1.129787	-0.401578
Η	4.278108	1.936929	2.277964
Η	-5.540544	-0.744629	-1.667955
С	2.739368	2.087262	0.818983
С	-4.119619	-1.628894	-0.352494
Η	2.765569	1.231381	2.778317
Η	-4.015317	-1.132738	-2.425748

Cu	1.826692	-0.769302	-0.212355
Cu	-1.556413	0.193251	-0.008781
0	-0.023428	-0.866639	-0.874513
0	-0.012515	-0.843848	0.574810
N	2.083206	1.404306	-0.141543
N	-2.936630	-1.473729	0.279850
С	1.433808	2.089741	-1.104304
С	-2.601829	-2.340843	1.259550
С	1.388524	3.482683	-1.159117
С	-3.426913	-3.390176	1.669014
С	2.059355	4.202624	-0.156881
С	-4.666285	-3.546684	1.029199
С	2.742960	3.495126	0.837147
С	-5.011461	-2.655939	0.006791
Η	3.279150	4.020184	1.626010
Η	-5.961103	-2.750570	-0.517185
Η	2.052848	5.291797	-0.155855
Η	-5.347244	-4.346027	1.319723
Η	0.852685	3.983746	-1.962691
Η	-3.104432	-4.057933	2.465332
Η	0.922256	1.477828	-1.845634
Η	-1.624196	-2.180499	1.711825

Table S2 Cartesian coordinates of $[Cu^{III}_2(La)_2(O^{2-})_2]^{2+}$ (2a) in the closed-shell singlet

state.

Ato	Atom Coordinates (Angstroms)		
	Х	Y	Ζ
С	-3.648806	-1.133880	-1.355500
С	-4.298881	-1.665486	-0.081904
Н	-4.424715	-0.930350	-2.108387
С	-3.300148	-2.261518	0.904375
Н	-4.946780	-0.919256	0.391202
Н	-4.962940	-2.484051	-0.387960
N	-2.355589	-1.285364	1.534216
Н	-3.841753	-2.776759	1.711946
Н	-2.681803	-3.005790	0.387278
С	-3.066540	-0.366950	2.466936
С	-1.380900	-2.080272	2.339670
N	-2.825809	0.111815	-1.197316
Н	-2.981028	-1.902710	-1.763147
Н	-2.344649	0.329726	2.897357
Н	-3.827526	0.210875	1.943560
Н	-3.545399	-0.949656	3.266912
Н	-0.716424	-1.402444	2.878175
Н	-1.930866	-2.707758	3.055558
Н	-0.780240	-2.703950	1.674875
С	-2.244267	0.409674	-2.537080
С	-3.713585	1.250404	-0.766323
Н	-1.541637	1.239799	-2.465732
Н	-1.697684	-0.466902	-2.889839
Н	-3.051133	0.654385	-3.242478
С	-3.138597	2.662099	-0.889629
Н	-4.625414	1.198543	-1.379618

Η	-3.998858	1.076806	0.271021
Η	-3.972008	3.340856	-0.653527
С	-1.988605	3.009391	0.034844
Η	-2.865603	2.895684	-1.925263
Cu	-1.327173	-0.217652	0.134312
0	0.231485	-0.462272	1.028892
0	-0.090549	0.494693	-0.992078
Cu	1.472361	0.182646	-0.131815
N	2.932121	-0.165660	1.202953
С	4.338931	0.027376	0.734167
С	4.574827	1.287398	-0.094268
С	3.950883	1.188212	-1.482646
N	2.458490	1.260700	-1.509022
С	2.002880	0.815235	-2.856776
С	1.987730	2.656841	-1.265629
С	2.782695	-1.546187	1.791985
Η	2.461086	1.447367	-3.630347
Η	0.914955	0.889372	-2.907719
Η	2.388451	3.329269	-2.037402
Η	0.895268	2.667837	-1.287534
Η	2.319248	3.000080	-0.282227
Η	4.235611	0.230413	-1.934267
Η	4.335097	1.990530	-2.130111
Η	5.659267	1.381313	-0.233044
Η	4.259556	2.195371	0.433026
Η	4.612867	-0.838207	0.125184
Η	4.986553	0.029688	1.623346
N	-1.631000	2.113002	0.970230
С	-0.645216	2.437725	1.828241
С	0.035976	3.656696	1.796537
С	-0.323472	4.587884	0.807024
С	-1.348783	4.258097	-0.084555
Η	-1.659245	4.952045	-0.864922

Η	0.188120	5.547052	0.733265
Η	0.824894	3.864585	2.517145
Η	-0.376419	1.667081	2.549390
Η	3.528431	-1.628764	2.597057
С	2.632428	0.812747	2.295084
Η	2.687729	1.835411	1.913375
Η	1.620415	0.626865	2.659060
Η	3.353547	0.694711	3.115697
Η	2.304608	-0.225660	-3.001347
Η	1.785612	-1.587401	2.238422
С	2.960883	-2.741335	0.835554
Η	3.117208	-3.615926	1.477925
Η	3.871529	-2.632729	0.234621
С	-0.318273	-3.432247	-1.815299
С	-0.119093	-4.336165	-0.761398
С	0.954371	-4.121378	0.112968
С	1.792020	-3.009182	-0.085178
Ν	1.591099	-2.133125	-1.092715
С	0.562082	-2.350203	-1.931541
Η	-1.126406	-3.561088	-2.533391
Η	-0.783969	-5.188770	-0.625304
Η	1.143344	-4.802191	0.941329
Η	0.422727	-1.608945	-2.716455

Atom Coordinates (Angstroms)			
	Х	Y	Z
С	-3.488067	-2.012367	-1.850960
С	-3.769855	-3.230683	-0.964204
Н	-4.273197	-1.956130	-2.620357
С	-2.897203	-3.360161	0.289124
Н	-4.828256	-3.238718	-0.677296
Н	-3.616809	-4.128912	-1.575372
Ν	-2.856667	-2.106780	1.106435
Н	-3.291855	-4.181524	0.908642
Н	-1.860590	-3.603881	0.024008
С	-4.194352	-1.462720	1.214040
С	-2.267364	-2.393637	2.432683
Ν	-3.449425	-0.717865	-1.091506
Н	-2.519840	-2.111076	-2.357566
Н	-2.159025	-1.462562	2.998720
Н	-2.893608	-3.095471	3.004957
Н	-1.273181	-2.829288	2.286099
С	-4.538051	-0.642071	-0.068986
С	-3.504433	0.441015	-2.042685
С	-2.442107	1.529237	-1.778507
Н	-3.329195	0.060255	-3.054230
Н	-2.589175	2.322204	-2.520769
С	-2.442685	2.121166	-0.389252
Н	-1.451555	1.085733	-1.955275
Cu	-1.764879	-0.739901	0.053048
0	0.082866	-1.106097	0.449700
0	0.038241	-0.817077	-0.981157
Cu	1.507007	0.200758	-0.264068

Table S3 Cartesian coordinates of $[Cu^{II}_2(Lb)_2(O_2^{2-})]^{2+}(1b)$ in the open-shell singlet state.

Ν	2.717261	1.301763	1.021072
С	1.988238	2.565872	1.379701
С	1.016166	3.030754	0.290073
С	1.555981	3.046569	-1.140205
Ν	2.077017	1.702403	-1.567814
С	1.728723	1.426342	-2.980711
С	3.169984	0.574657	2.252342
С	3.020835	-0.958406	2.159904
С	3.667976	-1.618012	0.963348
Η	2.141181	2.195417	-3.651199
Η	2.123127	0.447345	-3.271699
Η	0.639016	1.403532	-3.081817
Η	2.353197	3.793712	-1.264045
Η	0.738377	3.324643	-1.813553
Η	0.665373	4.039001	0.547505
Η	0.135816	2.380113	0.308089
Η	2.722893	3.349186	1.619135
Η	1.402395	2.368667	2.283102
Ν	-2.060545	1.293484	0.614656
С	-1.987957	1.768316	1.872784
С	-2.286299	3.094157	2.200129
С	-2.686992	3.957159	1.169227
С	-2.767658	3.462298	-0.139946
Η	-3.067884	4.106801	-0.963900
Η	-2.926507	4.998601	1.380431
Η	-2.202935	3.433307	3.230373
Η	-1.668257	1.059196	2.635593
Ν	3.081612	-1.395907	-0.237933
С	3.576850	-2.009812	-1.328014
С	4.686520	-2.861696	-1.290260
С	5.313210	-3.076612	-0.053639
С	4.793508	-2.448315	1.086752
Η	3.059490	-1.810892	-2.266999

Η	5.042447	-3.335514	-2.202856
Η	6.184482	-3.726370	0.021980
Η	5.245502	-2.601758	2.065167
Η	3.431870	-1.383479	3.083255
Η	1.948423	-1.194719	2.130324
Η	4.208801	0.848870	2.479508
Η	2.555268	0.907619	3.094289
С	3.898397	1.618440	0.144893
С	3.546268	1.623833	-1.362413
Η	4.660811	0.853804	0.308660
Η	4.322485	2.580965	0.459202
Η	3.887785	0.690088	-1.817751
Η	-4.153226	-0.777676	2.066066
Η	-4.967499	-2.213826	1.428090
Η	-5.490286	-0.965440	-0.511261
Η	-4.640940	0.409383	0.209652
Η	4.054749	2.454112	-1.874688
Η	-4.512814	0.873589	-2.026652

Table S4 Cartesian coordinates of $[Cu^{III}_2(Lb)_2(O^{2-})_2]^{2+}$ (2b) in the closed-shell singlet

state.

Ator	n Co	ordinates (A	angstroms)
	Х	Y	Ζ
С	1.865905	-2.480584	1.764365
С	1.757509	-3.623312	0.744270
Н	2.514781	-2.800464	2.592445
С	1.117147	-3.255577	-0.600964
Η	2.747544	-4.060502	0.571743
Н	1.149366	-4.416977	1.194657
Ν	1.680963	-2.001254	-1.209743
Н	1.274992	-4.083353	-1.307647
Н	0.037490	-3.098145	-0.501796
С	3.169631	-1.939722	-1.129705
С	1.205120	-1.868680	-2.606808
N	2.435963	-1.225726	1.161383
Н	0.886465	-2.212565	2.177410
Н	1.533575	-0.908234	-3.011311
Н	1.605116	-2.688519	-3.219977
Н	0.112229	-1.891897	-2.605653
С	3.620830	-1.539990	0.293548
С	2.763328	1.239162	1.860009
С	3.250613	1.651291	0.487941
Cu	0.982186	-0.599257	-0.011701
0	-0.465616	-0.218419	-1.015752
0	0.014193	0.251982	1.283538
Cu	-1.363503	0.750647	0.233292
Ν	-2.691234	1.480319	-1.029807
С	-1.902543	2.609272	-1.639793
С	-1.014039	3.330571	-0.601090

С	-1.590117	3.473948	0.821341
N	-2.069640	2.164318	1.411228
С	-1.669077	2.025006	2.829742
С	-3.540070	1.992288	1.244354
С	-3.089018	0.493746	-2.082062
Η	-2.054405	2.869463	3.417710
Η	-0.577857	1.986497	2.883092
Η	-2.419674	4.191894	0.855548
Η	-0.795425	3.852415	1.470194
Η	-0.793801	4.338079	-0.975686
Η	-0.049841	2.807732	-0.531887
Η	-2.603198	3.299393	-2.127660
Η	-1.254972	2.173746	-2.405979
N	2.509670	1.226783	-0.563683
С	2.834948	1.646118	-1.797110
С	3.918712	2.493713	-2.062652
С	4.704960	2.915649	-0.980276
С	4.362959	2.490760	0.312039
Η	4.943101	2.809106	1.176733
Η	5.563401	3.567861	-1.138146
Η	4.134277	2.805618	-3.082755
Η	2.195848	1.294235	-2.608165
Η	-3.663894	1.035064	-2.848486
С	-3.858280	2.033274	-0.250225
Η	-2.070919	1.086859	3.223237
Η	-2.155018	0.135860	-2.528287
С	-3.923901	-0.709653	-1.606526
Η	-4.204271	-1.252835	-2.516750
Η	-4.867576	-0.369054	-1.159355
С	-2.156046	-3.398809	1.217450
С	-2.608114	-3.918523	-0.004911
С	-3.164154	-3.042472	-0.947260
С	-3.264924	-1.674037	-0.640756

Ν	-2.820747	-1.177225	0.534240
С	-2.275140	-2.020154	1.429236
Η	-1.713038	-4.034952	1.981704
Η	-2.523251	-4.982963	-0.221994
Η	-3.521414	-3.412139	-1.907073
Η	-1.892073	-1.560054	2.340056
Η	-4.051195	3.055033	-0.592671
Η	-4.755568	1.446946	-0.449004
Η	-4.085907	2.771899	1.794364
Η	3.495464	-1.175828	-1.839742
Η	3.597445	-2.901216	-1.442576
Η	4.241505	-0.645743	0.235385
Η	4.216445	-2.322435	0.779014
С	2.815646	-0.259723	2.241851
Η	3.816931	-0.544301	2.593865
Η	2.114462	-0.407022	3.068692
Η	3.322804	1.782232	2.629848
Η	1.710777	1.537458	1.913711
Η	-3.797273	1.011137	1.653404