## Supplementary Information



Fig. S1 FT-IR spectra of compounds $\mathbf{1}$ and $\mathbf{2}$

Table S1 Selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of compounds $\mathbf{1}$ and 2

| Bond | $\mathrm{d}(\AA)$ | Bond | $\mathrm{d}(\AA)$ |
| :---: | :---: | :---: | :---: |
| Compound 1 |  |  |  |
| $\mathrm{Cu}(1)-\mathrm{O}(2)$ | 1.938(6) | $\mathrm{Cu}(2)-\mathrm{N}(4)$ | 2.020(7) |
| $\mathrm{Cu}(1)-\mathrm{O}(3)$ | $1.987(5)$ | $\mathrm{Cu}(2)-\mathrm{N}(3)$ | 2.021(7) |
| $\mathrm{Cu}(1)-\mathrm{N}(1)$ | 1.995 (7) | $\mathrm{Cu}(2)-\mathrm{O}(4)$ | 2.152(6) |
| $\mathrm{Cu}(1)-\mathrm{N}(2)$ | 2.001(6) | $\mathrm{Cu}(3)-\mathrm{O}(8)$ | 1.945 (6) |
| $\mathrm{Cu}(1)-\mathrm{O}(4)$ | 2.424(6) | $\mathrm{Cu}(3)-\mathrm{O}(6)$ | 1.964(6) |
| $\mathrm{Cu}(2)-\mathrm{O}(5)$ | 1.940 (6) | $\mathrm{Cu}(3)-\mathrm{N}(6)$ | 2.004(8) |
| $\mathrm{Cu}(2)-\mathrm{O}(7)$ | 1.960 (6) | $\mathrm{Cu}(3)-\mathrm{N}(5)$ | 2.008(7) |
| $\mathrm{Cu}(3)-\mathrm{O}(9)$ | $2.195(7)$ |  |  |
| Compound 2 |  |  |  |
| Co1-O6 | 2.034(7) | Co2-O3 | 2.051(7) |
| Co1-O7 | 2.097(7) | Co2-O1 | 2.065(7) |
| Co1-O5 | 2.166 (6) | Co2-O5 | 2.222(6) |
| Co1-O5 | 2.174(6) | Co2-O3 | 2.051(7) |
| Angle | $\left({ }^{\circ}\right)$ | Angle | $\left({ }^{\circ}\right)$ |
| Compound 1 |  |  |  |
| O2-Cu1-O3 | 90.8(2) | O5-Cu2-O4 | 89.6(2) |
| O2-Cu1-N1 | 94.5(3) | O7-Cu2-O4 | 100.8(2) |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$ | 174.5(2) | N4-Cu2-O4 | 94.9(2) |
| $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$ | 176.3(3) | N3-Cu2-O4 | 94.2(2) |
| O3-Cu1-N2 | 92.9(2) | O8-Cu3-O6 | 90.9(3) |
| N1-Cu1-N2 | 81.8(3) | O8-Cu3-N6 | 92.9(3) |


| O2-Cu1-O4 | $93.6(2)$ | O6-Cu3-N6 | $165.4(3)$ |
| :--- | :--- | :--- | :--- |
| O3-Cu1-O4 | $58.2(2)$ | O8-Cu3-N5 | $174.3(3)$ |
| N1-Cu1-O4 | $122.4(2)$ | O6-Cu3-N5 | $93.5(3)$ |
| N2-Cu1-O4 | $88.9(2)$ | N6-Cu3-N5 | $82.0(3)$ |
| O5-Cu2-O7 | $92.7(2)$ | O8-Cu3-O9 | $89.5(3)$ |
| O5-Cu2-N4 | $172.5(3)$ | O6-Cu3-O9 | $94.8(3)$ |
| O7-Cu2-N4 | $92.4(3)$ | N6-Cu3-O9 | $99.3(3)$ |
| O5-Cu2-N3 | $91.8(3)$ | N5-Cu3-O9 | $93.9(3)$ |
| O7-Cu2-N3 | $164.4(3)$ | N4-Cu2-N3 | $81.9(3)$ |
| Compound 2 |  |  |  |
| O6-Co1-O6 | $180.0(5)$ | O7-Co1-O5 | $93.0(3)$ |
| O6-Co1-O7 | $90.4(3)$ | O5-Co1-O5 | 180 |
| O3-Co2-O3 | $180.0(6)$ | O7-Co1-O7 | 180 |
| O3-Co2-O1 | $89.5(3)$ | O6-Co1-O5 | $94.6(3)$ |
| O1-Co2-O1 | 180 | O3-Co2-O5 | $88.8(2)$ |
| O7-Co1-O5 | $93.0(3)$ | O1-Co2-O5 | $91.6(2)$ |



Fig. S2 Propagation of 1D chain of hexanuclear units of $\mathbf{1}$


Fig. S3 Supramolecular association of neighboring complex hexanuclear units involving lattice $\mathrm{NO}_{3}$


Fig. S4 Formation of linear $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ core in compound $\mathbf{2}$ involving lattice aqua molecules

### 3.5 Electronic spectroscopy



Fig. S5 Electronic spectra of $\mathbf{1}$ in (a) aqueous solution $\left(10^{-3} \mathrm{M}\right)$ and (b) solid state

We have recorded the UV-Vis spectra of the complexes $\mathbf{1}$ and $\mathbf{2}$ in solid as well as in solution phase. The spectra are shown in Fig. S5 and Fig. S6 respectively. The UV-Vis spectrum of 1 shows two sharp and intense absorption bands at 326 nm and 346 nm corresponding to $\pi \rightarrow \pi^{*}$ and $n \rightarrow \pi^{*}$ transition of the phen ligand, respectively. ${ }^{1}$ The aqueous phase electronic spectrum of 1 shows a broad visible absorption band at 697 nm which may be attributed to the ${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$ transition for distorted octahedral complexes. ${ }^{2}$ The UV-Vis-NIR spectrum of $\mathbf{1}$ indicates the distortion of $\mathrm{Cu}(\mathrm{II})$ coordination in the complex 1 from $O_{h}$ symmetry [Fig. S5(b)]. The broad band at 705 nm due to the ${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$ transition, which gives rise to the characteristic
blue colour to octahedral copper(II) compounds, splits into 1037 nm , suggesting coordination environment of $\mathrm{Cu}(\mathrm{II})$ in the complex to be other than octahedral. ${ }^{3}$ The unusual spectra for 1 from usually observed for distorted octahedral structure may be attributed to the presence of copper centers with different coordination environments. ${ }^{4}$ The UV bands originating from the $\mathrm{n} \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ transitions of the pyridine rings of phen are found in the expected positions. ${ }^{1}$

Solid state UV-Vis-NIR spectrum of 2 exhibits band at 273 nm assigned to LMCT transitions. The spectrum is shown in [Fig. S6(a)]. We can expect three ligand field bands for high-spin octahedral $\mathrm{Co}(\mathrm{II})$ complex. The first band $\left(v_{1}\right)$ occurs at $1239 \mathrm{~nm}\left[{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}(\mathrm{~F})\right]$, the third band $\left(v_{3}\right)$ is seen at $470 \mathrm{~nm}\left[{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{P})\left(v_{3}\right)\right]$, and the $v_{2}$ band due to ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~A}_{2 \mathrm{~g}}(\mathrm{~F})$ appears at 510 nm with a shoulder at 629 nm because of a two-electron transition. ${ }^{5}$ The spectrum in water [Fig. S6(b)] shows similar splitting of band at 507 nm with a shoulder at $640 \mathrm{~nm} .{ }^{6}$ The NIR band is not seen in the solution spectrum because of the limit in the wavelength window of the spectrophotometer used.


Fig. S6(a) Solid state UV-Vis-NIR spectrum of 2; (b) UV-Vis spectrum of $\mathbf{2}$ in water
The electronic spectral studies reveal that the complexes $\mathbf{1}$ and 2 do not show marked differences in the position of the absorption peaks in the solid and in aqueous phases and therefore, it may be assumed that bonding modes as well as the geometries of the complexes does not change in the solution phase. ${ }^{7}$

(a)

(b)

Fig. 7 Powder X-ray diffraction patterns: as-synthesized (red) and simulated from MERCURY software (black) of compounds 1 (a) and 2 (b).


Fig. S8 Thermogravimetric analyses of $\mathbf{1}$ and $\mathbf{2}$

## Supplementary References

1 R. P. Sharma, A. Saini, S. Singh, A. Singh, P. Venugopalan and V. Ferretti, J. Mol. Struct. 2010, 69, 155-162.

2 M. Ghosh, A. Majee, M. Nethaji and T. Chattopadhyay, Inorg. Chim. Acta, 2009, 362, 20522055

3 (a) S. Choubey, S. Roy, K. Bhar, R. Ghosh, P. Mitra, C. Lin, J. Ribas and B. K. Ghosh, Polyhedron, 2013, 55, 1-9;
(b) L. K. Das, S. W. Park, S. J. Cho and A. Ghosh, J. Chem. Soc., Dalton Trans., 2012, 41, 11009-11017.

4 (a) D. Dutta, S. M. N. Islam, U. Saha, S. Chetry, A. K. Guha and M. K. Bhattacharyya, J. Chem. Crystallogr., 2018, 48, 156-163;
(b) D. Dutta, S. Chetry, A. Gogoi, B. Choudhury, A. K. Guha and M. K. Bhattacharyya, Polyhedron, 2018, 151, 381-393.
5 S. M. N. Islam, D. Dutta, P. Sharma, A. K. Verma, A. Frontera and M. K. Bhattacharyya, Inorg. Chim.Acta, 2019, 498, 119108.

6 D. Dutta, S. M. N. Islam, U. Saha, A. Frontera, and M. K. Bhattacharyya, J. Mol Struct, 2019, 1195, 733-743.

7 M. Ghosh, A. Majee, M. Nethaji and T. Chattopadhyay, Inorg. Chim. Acta, 2009, 362 20522055.

