<Electronic Supplementary Information (ESI) available>

Diverse anion exchange of pliable $[X_2@Pd_3L_4]^{4+}$ double cages: A molecular

ruler for recognition of polyatomic anions

Ganguri Sarada, Ahreum Kim, Dongwon Kim and Ok-Sang Jung*

Department of Chemistry, Pusan National University, Busan 46241, Korea

	$[PdL_2]^{\cdot}(BF_4)_2^{\cdot}2C_6H_6^{\cdot}2CH_3CN$	$[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO$	$[(NO_3)_2(H_2O)_2@Pd_3L_4](NO_3)_4 \cdot 2C_6H_6 \cdot Me_2SO$
Formula	$C_{62}H_{64}B_2F_8N_8O_8Pd$	$C_{110}H_{138}B_4F_{16}N_{20}O_{30}Pd_3\\$	$C_{106}H_{114}N_{18}O_{37}Pd_3S$
$M_{ m w}$	1329.23	2886.84	2565.39
Cryst.sys.	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{I}/c$	C2/c	P2/n
a (Å)	17.540(5)	41.454(3)	24.117(5)
<i>b</i> (Å)	14.333(3)	16.3397(12)	16.548(3)
<i>c</i> (Å)	12.987(3)	19.2485(13)	37.143(7)
α (°)	90	90	90
β (°)	108.92(3)	95.4160(10)	101.83(3)
γ (°)	90	90	90
$V(Å^3)$	3088.5(14)	12979.8(16)	14508(5)
Ζ	2	4	4
ρ (g cm ⁻³)	1.429	1.477	1.174
μ (mm ⁻¹)	0.340	0.513	0.612
$R_{\rm int}$	0.0339	0.0471	0.1078
GoF on F^2	1.088	1.063	1.012
$R_1 [I > 2\sigma(I)]^a$	0.0677	0.0659	0.0944
wR_2 (all data) ^b	0.1965	0.2140	0.3063
$\overline{{}^{\mathbf{a}}R_{1} = \Sigma F_{\mathrm{o}} - F_{\mathrm{c}} / \Sigma F_{\mathrm{o}} ,}$	${}^{\mathrm{b}}wR_2 = (\Sigma[w(F_{\mathrm{o}}^2 - F_{\mathrm{c}}^2)^2]/\Sigma[w(F_{\mathrm{o}}^2)^2])^{1/2}$		

Table S1. Crystallographic data

 $[(NO_3)_2@Pd_3L_4](PF_6)_4 \cdot 6Me_2SO$ $[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO$ $[(PF_6)_2@Pd_3L_4](PF_6)_4 \cdot 4C_3H_7NO$ Formula $C_{96}H_{104}F_{24}N_{14}O_{24}P_4Pd_3S_2\\$ $C_{184}H_{188}F_{60}N_{26}O_{40}P_{10}Pd_6\\$ $C_{92}H_{92}F_{36}N_{12}O_{16}P_6Pd_3\\$ 2801.13 5491.69 2810.79 $M_{\rm w}$ Cryst.sys. Triclinic Triclinic Monoclinic Space group P-1 P-1 C2/m a (Å) 13.814(3) 14.451(3) 17.463(4) b (Å) 16.319(3) 19.150(4) 42.738(9) c (Å) 9.1170(18) 18.370(4) 23.820(5) 90 α (°) 68.07(3) 96.52(3) β (°) 88.03(3) 106.07(3) 93.09(3) γ(°) 71.71(3) 90.14(3) 90 $V(Å^3)$ 3631.2(16) 6289(2) 6794(3) Ζ 2 1 1 ρ (g cm⁻³) 1.281 1.450 1.374 μ (mm⁻¹) 0.412 0.807 0.770 0.0214 0.0132 0.0550 $R_{\rm int}$ GoF on F^2 1.215 1.011 2.123 $R_1 [I > 2\sigma(I)]^a$ 0.0538 0.0506 0.1115 wR_2 (all data)^b 0.1730 0.1426 0.3340

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|, {}^{b}wR_{2} = (\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}])^{1/2}}$

	$[(NO_3)_2 @Pd_3 L_4](ClO_4)_4 \cdot 2C_6 H_6 \cdot 4Me_2 SO$	$[(NO_3)(H_2O)(ClO_4)@Pd_3L_4](ClO_4)_4 \cdot 3C_3H_7NO$	$[(ClO_4)_2@Pd_3L_4](ClO_4)_4 \cdot 2Me_2SO$
Formula	$C_{112}H_{128}Cl_{14}N_{14}O_{42}Pd_3S_4$	$C_{95}H_{101}Cl_4N_{15}O_{40}Pd_3$	$C_{96}H_{104}Cl_{16}N_{12}O_{42}Pd_{3}S_{2}$
$M_{ m w}$	2931.52	2553.90	2693.93
Cryst.sys.	Triclinic	Triclinic	Monoclinic
Space group	P-1	P-1	$P2_1/n$
a (Å)	14.016(5)	14.393(3)	9.3150(19)
<i>b</i> (Å)	16.030(6)	19.113(4)	22.198(4)

<i>c</i> (Å)	18.468(7)	23.510(5)	28.653(6)
α (°)	66.969(2)	98.23(3)	90
β (°)	86.217(3)	106.16(3)	92.76(3)
γ (°)	70.922(3)	90.40(3)	90
$V(Å^3)$	3600(2)	6140(2)	5918(2)
Ζ	1	2	2
ρ (g cm ⁻³)	1.352	1.381	1.512
$\mu ({\rm mm}^{-1})$	0.581	0.819	0.964
$R_{\rm int}$	0.2015	0.0497	0.0817
GoF on F^2	0.972	1.106	2.067
$R_1 \left[I \ge 2\sigma(I)\right]^a$	0.0746	0.1065	0.1057
wR_2 (all data) ^b	0.1824	0.3226	0.3159

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR_{2} = (\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}])^{1/2}}$

$[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$		$[(NO_3)_2(H_2O)_2@Pd_3L_4](B$	$F_4)_4 \cdot 6C_3H_7NO$	$[(NO_3)_2(H_2O)_2@Pd_3L_4](NO_3)$	$_4 \cdot 2C_6H_6 \cdot Me_2SO_6$
Pd(01)-N(00A)#1	2.020(2)	Pd(1)-N(12)	2.009(4)	Pd(1)-N(7)	2.003(7)
Pd(01)-N(00A)	2.020(2)	Pd(1)-N(10)	2.013(4)	Pd(1)-N(3)	2.016(10)
Pd(01)-N(1)	2.021(2)	Pd(1)-N(6)#1	2.036(3)	Pd(1)-N(5)	2.025(7)
Pd(01)-N(1)#1	2.021(2)	Pd(1)-N(6)	2.037(3)	Pd(1)-N(1)	2.027(10)
		Pd(2)-N(8)#1	2.018(4)	Pd(2)-N(2)	1.959(12)
N(00A)#1-Pd(01)-N(00A)	180.0	Pd(2)-N(11)	2.023(4)	Pd(2)-N(4)	2.003(12)
N(00A)#1-Pd(01)-N(1)	89.86(9)	Pd(2)-N(7)	2.027(4)	Pd(2)-N(6)#1	2.040(7)
N(00A)-Pd(01)-N(1)	90.14(9)	Pd(2)-N(9)#1	2.034(4)	Pd(2)-N(6)	2.040(7)
V(00A)#1-Pd(01)-N(1)#1	90.14(9)			Pd(3)-N(11)	2.014(8)
N(00A)-Pd(01)-N(1)#1	89.86(9)	N(12)-Pd(1)-N(10)	180.0	Pd(3)-N(13)	2.019(9)
N(1)-Pd(01)-N(1)#1	180.00(12)	N(12)-Pd(1)-N(6)#1	89.58(8)	Pd(3)-N(10)#2	2.029(7)
		N(10)-Pd(1)-N(6)#1	90.42(8)	Pd(3)-N(8)	2.043(7)
		N(12)-Pd(1)-N(6)	89.58(8)	Pd(4)-N(14)	2.017(11)
		N(10)-Pd(1)-N(6)	90.42(8)	Pd(4)-N(12)	2.023(10)
		N(6)#1-Pd(1)-N(6)	179.16(17)	Pd(4)-N(9)	2.036(6)
		N(8)#1-Pd(2)-N(11)	88.62(17)	Pd(4)-N(9)#2	2.036(6)
		N(8)#1-Pd(2)-N(7)	176.70(16)		
		N(11)-Pd(2)-N(7)	90.85(17)	N(7)-Pd(1)-N(3)	89.6(3)
		N(8)#1-Pd(2)-N(9)#1	90.40(16)	N(7)-Pd(1)-N(5)	175.5(3)
		N(11)-Pd(2)-N(9)#1	177.06(17)	N(3)-Pd(1)-N(5)	91.9(3)
		N(7)-Pd(2)-N(9)#1	90.40(16)	N(7)-Pd(1)-N(1)	88.7(3)
				N(3)-Pd(1)-N(1)	178.2(3)
				N(5)-Pd(1)-N(1)	89.7(3)
				N(2)-Pd(2)-N(4)	180.0
				N(2)-Pd(2)-N(6)#1	88.9(2)
				N(4)-Pd(2)-N(6)#1	91.1(2)
				N(2)-Pd(2)-N(6)	88.9(2)
				N(4)-Pd(2)-N(6)	91.1(2)
				N(6)#1-Pd(2)-N(6)	177.9(4)
				N(11)-Pd(3)-N(13)	177.5(3)
				N(11)-Pd(3)-N(10)#2	90.1(3)
				N(13)-Pd(3)-N(10)#2	88.6(3)
				N(11)-Pd(3)-N(8)	90.1(3)
				N(13)-Pd(3)-N(8)	91.0(3)

			_			
Table S2.	Bond	lengths	(Å) a	nd ar	ngles	(°)

N(10)#2-Pd(3)-N(8)	177.5(3)
N(14)-Pd(4)-N(12)	180.0
N(14)-Pd(4)-N(9)	89.93(19)
N(12)-Pd(4)-N(9)	90.07(19)
N(14)-Pd(4)-N(9)#2	89.93(19)
N(12)-Pd(4)-N(9)#2	90.07(19)
N(9)-Pd(4)-N(9)#2	179.9(4)
$\frac{1}{x+1/2} - x + \frac{1}{2} - x + \frac{1}{2}$	

^{#1}-x+1/2,y,-z+1/2 ^{#2}-x+3/2,y,-z+1/2

#1 -x+1, y, -z+3/2

#1 -x+1, -y, -z+1

$[(NO_3)_2@Pd_3L_4](PF_6)_4$	₄·6Me ₂ SO	$[(NO_3)(H_2O)(PF_6)@Pd_3L_4]($	$PF_6)_4 \cdot 3C_3H_7NO$	$[(PF_6)_2 @Pd_3L_4](PF_6)_4$	·4C ₃ H ₇ NO
Pd(01)-N(2)	2.0214(18)	Pd(01)-N(8)	2.032(3)	Pd(1)-N(5)#1	1.978(11)
Pd(01)-N(2)#1	2.0214(18)	Pd(01)-N(5)	2.037(3)	Pd(1)-N(5)	1.978(11)
Pd(01)-N(5)	2.0356(19)	Pd(01)-N(11)	2.044(3)	Pd(1)-N(2)	2.053(9)
Pd(01)-N(5)#1	2.0356(19)	Pd(01)-N(2)	2.053(3)	Pd(1)-N(2)#1	2.053(9)
N(1)-Pd(02)#1	2.023(2)	N(1)-Pd(03)	2.025(3)	Pd(2)-N(4)#2	1.999(10)
Pd(02)-N(6)	2.019(2)	Pd(02)-N(3)	2.021(3)	Pd(2)-N(4)	1.999(10)
Pd(02)-N(3)	2.020(2)	Pd(02)-N(9)	2.021(3)	Pd(2)-N(1)#2	2.009(9)
Pd(02)-N(4)#1	2.029(2)	Pd(02)-N(12)	2.027(3)	Pd(2)-N(1)	2.009(9)
		Pd(02)-N(6)	2.031(4)		
N(2)-Pd(01)-N(2)#1	180.0	Pd(03)-N(4)	2.025(4)	N(5)#1-Pd(1)-N(5)	180.0
N(2)-Pd(01)-N(5)	94.36(8)	Pd(03)-N(10)	2.036(3)	N(5)#1-Pd(1)-N(2)	86.1(3)
N(2)#1-Pd(01)-N(5)	85.65(8)	Pd(03)-N(7)	2.040(3)	N(5)-Pd(1)-N(2)	93.9(3)
N(2)-Pd(01)-N(5)#1	85.65(8)			N(5)#1-Pd(1)-N(2)#1	93.9(3)
N(2)#1-Pd(01)-N(5)#1	94.35(8)	N(8)-Pd(01)-N(5)	90.97(12)	N(5)-Pd(1)-N(2)#1	86.1(3)
N(5)-Pd(01)-N(5)#1	180.0	N(8)-Pd(01)-N(11)	87.45(12)	N(2)-Pd(1)-N(2)#1	180.0
N(6)-Pd(02)-N(3)	90.04(9)	N(5)-Pd(01)-N(11)	177.24(11)	N(4) -Pd(2)-N(4)#2	178.9(4)
N(6)-Pd(02)-N(1)#1	90.13(9)	N(8)-Pd(01)-N(2)	176.99(12)	N(4)-Pd(2)-N(1)#2	90.5(4)
N(3)-Pd(02)-N(1)#1	178.56(7)	N(5)-Pd(01)-N(2)	87.32(11)	N(4)#2-Pd(2)-N(1)#2	89.5(4)
N(6)-Pd(02)-N(4)#1	177.98(7)	N(11)-Pd(01)-N(2)	94.16(12)	N(4)-Pd(2)-N(1)	89.5(4)
N(3)-Pd(02)-N(4)#1	89.41(9)	N(3)-Pd(02)-N(9)	178.17(14)	N(4)#2-Pd(2)-N(1)	90.5(4)
N(1)#1-Pd(02)-N(4)#1	90.37(9)	N(3)-Pd(02)-N(12)	89.19(13)	N(1)#2-Pd(2)-N(1)	179.8(4)
		N(9)-Pd(02)-N(12)	89.44(14)		
		N(3)-Pd(02)-N(6)	90.76(14)		
		N(9)-Pd(02)-N(6)	90.59(15)		
		N(12)-Pd(02)-N(6)	179.26(13)		
		N(1)-Pd(03)-N(4)	89.73(13)		

N(1)-Pd(03)-N(10) 89.78(13)
N(4)-Pd(03)-N(10) 177.65(14)
N(1)-Pd(03)-N(7)) 177.34(14)
N(4)-Pd(03)-N(7)) 89.50(14)
N(10)-Pd(03)-N(7	90.89(13)
	^{#1} -x, -y, -z+1
	^{#2} -x, y, -z+1

 $\overline{x^{\#1}}$ -x+1, -y+1, -z+1

 $[(NO_3)_2@Pd_3L_4](CIO_4)_4 \cdot 2C_6H_6 \cdot 4Me_2SO [(NO_3)(H_2O)(CIO_4)_@Pd_3L_4](CIO_4)_4 \cdot 3C_3H_7NO \ [(CIO_4)_2@Pd_3L_4](CIO_4)_4 \cdot 2Me_2SO [(NO_3)(H_2O)(CIO_4)_2@Pd_3L_4](CIO_4)_4 \cdot 3C_3H_7NO \ [(NO_3)(H_2O)(CIO_4)_4 \cdot 3C_3H_7NO \ [(NO_3)(H_2O)(CIO_4)$ N(1)-Pd(02)#1 2.025(7)N(1)-Pd(03)2.002(10) Pd(1)-N(2)2.014(8) 2.039(6) Pd(01)-N(5)#1 Pd(01)-N(11) 2.030(7) Pd(1)-N(2)#1 2.014(8) Pd(01)-N(5) 2.039(6) Pd(01)-N(5) 2.042(7) Pd(1)-N(5)#1 2.028(8) Pd(01)-N(2) Pd(01)-N(2) Pd(1)-N(5)2.028(8) 2.048(7) 2.048(7)2.050(7)Pd(01)-N(2)#1 2.048(7) Pd(01)-N(8) 2.058(6) N(1)-Pd(2)#1 Pd(02)-N(4) 2.014(7) Pd(02)-N(12) 2.029(8) Pd(2)-N(3)2.032(7)Pd(02)-N(3) 2.019(6) Pd(02)-N(6) 2.019(7) Pd(2)-N(6) 2.026(8) Pd(02)-N(6)#1 2.042(7)Pd(02)-N(9) 2.027(7) Pd(2)-N(4)#1 2.056(8) Pd(02)-N(3) 2.041(8) N(5)#1-Pd(01)-N(5) 180.0 Pd(03)-N(10) 1.961(6) N(2)#1-Pd(1)-N(2) 180.0 N(5)#1-Pd(01)-N(2) Pd(03)-N(7) 85.4(2) 2.011(8) N(2)#1-Pd(1)-N(5)#1 89.0(3) N(5)-Pd(01)-N(2) 94.6(2) Pd(03)-N(4)2.020(8) N(2)-Pd(1)-N(5)#1 91.0(3) N(5)#1-Pd(01)-N(2)#1 94.6(2) N(2)#1-Pd(1)-N(5) 91.0(3) N(5)-Pd(01)-N(2)#1 85.4(2) N(11)-Pd(01)-N(5) 175.8(2) N(2)-Pd(1)-N(5)89.0(3) 180.0 N(2)-Pd(01)-N(2)#1 N(11)-Pd(01)-N(2) 91.3(3) N(5)#1-Pd(1)-N(5)180.0 N(4)-Pd(02)-N(3)90.1(3) N(5)-Pd(01)-N(2) 86.9(3) N(3)-Pd(2)-N(6)90.3(3) N(4)-Pd(02)-N(1)#1 90.2(4) N(11)-Pd(01)-N(8) 86.6(3) N(3)-Pd(2)-N(1)#1 178.8(3) N(3)-Pd(02)-N(1)#1 178.2(3) N(5)-Pd(01)-N(8) 95.1(3) N(6)-Pd(2)-N(1)#1 88.8(3) N(4)-Pd(02)-N(6)#1 177.0(3) N(2)-Pd(01)-N(8) N(3)-Pd(2)-N(4)#1 89.9(3) 176.2(3) N(3)-Pd(02)-N(6)#1 88.9(3) N(12)-Pd(02)-N(6) 177.7(3) N(6)-Pd(2)-N(4)#1 178.2(3) N(1)#1-Pd(02)-N(6)#1 90.7(3) N(12)-Pd(02)-N(9) 89.1(3) N(1)#1-Pd(2)-N(4)#1 91.0(3) N(6)-Pd(02)-N(9) 90.6(3) N(6)-Pd(02)-N(12)177.9(3) N(9)-Pd(02)-N(12) 89.4(3) N(6)-Pd(02)-N(3) 89.4(3) N(9)-Pd(02)-N(3)177.4(3) N(12)-Pd(02)-N(3) 90.5(3)

N(10)-Pd(03)-N(1)

92.1(4)

	#1
N(7)-Pd(03)-N(4)	88.8(3)
N(1)-Pd(03)-N(4)	88.9(4)
N(10)-Pd(03)-N(4)	179.0(3)
N(1)-Pd(03)-N(7)	177.3(4)
N(10)-Pd(03)-N(7)	90.2(3)

^{#1} -x+1, -y+1, -z+1

^{#1} -x, -y+1, -z+1

Fig. S1 IR spectra of Ligand (a) and $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (b).

Fig. S2 IR spectra of $[(NO_3)_2(H_2O)_2Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO (a)$, $[(NO_3)_2@Pd_3L_4](PF_6)_4 \cdot 6Me_2SO (b), [(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO (c),$ $[(PF_6)_2@Pd_3L_4](PF_6)_4 \cdot 4C_3H_7NO (d), [(NO_3)_2@Pd_3L_4](CIO_4)_4 \cdot 2C_6H_6 \cdot 4Me_2SO (e),$ $[(NO_3)(H_2O)(CIO_4)@Pd_3L_4](CIO_4)_4 \cdot 3C_3H_7NO (f), [(CIO_4)_2@Pd_3L_4](CIO_4)_4 \cdot 2Me_2SO (g),$ and $[(NO_3)_2(H_2O)_2@Pd_3L_4](NO_3)_4 \cdot 2C_6H_6 \cdot Me_2SO (h).$

Fig. S3 ¹H NMR spectra of Ligand (a), $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (b), and $[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO$ (c).

Fig. S4 ¹H NMR spectra of $[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO (a)$, $[(NO_3)_2@Pd_3L_4](PF_6)_4 \cdot 6Me_2SO (b), [(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO (c),$ $[(PF_6)_2@Pd_3L_4](PF_6)_4 \cdot 4C_3H_7NO (d), [(NO_3)_2@Pd_3L_4](CIO_4)_4 \cdot 2C_6H_6 \cdot 4Me_2SO (e),$ $[(NO_3)(H_2O)(CIO_4)@Pd_3L_4](CIO_4)_4 \cdot 3C_3H_7NO (f), [(CIO_4)_2@Pd_3L_4](CIO_4)_4 \cdot 2Me_2SO (g),$ and $[(NO_3)_2(H_2O)_2@Pd_3L_4](NO_3)_4 \cdot 2C_6H_6 \cdot Me_2SO (h).$

Fig. S5 ¹H NMR spectra of

 $[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO \text{ at } 25 \text{ °C } (a), \\[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO \text{ at } 35 \text{ °C } (b), \\[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO \text{ at } 45 \text{ °C } (c), \text{ and} \\[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO \text{ at } 55 \text{ °C } (d).$

Fig. S6 ¹³C NMR spectra of Ligand (a), $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (b), $[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO$ (c), and $[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO$ (d).

Fig. S7 TGA and DSC overlay of $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (a) and $[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO$ (b).

Fig. S8 ¹H NMR of Ligand (a), $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (b) [(NO₃)₂(H₂O)₂@Pd₃L₄](BF₄)₄·6C₃H₇NO (c), [(NO₃)₂(H₂O)₂@Pd₃L₄](BF₄)₄·6C₃H₇NO+TBAF (2 eq) (d), and [(NO₃)₂(H₂O)₂@Pd₃L₄](BF₄)₄·6C₃H₇NO+TBAF (10 eq) (e).

Fig. S9 Crystal structures of $[PdL_2] \cdot (BF_4)_2 \cdot 2C_6H_6 \cdot 2CH_3CN$ (a), $[(NO_3)_2(H_2O)_2@Pd_3L_4](BF_4)_4 \cdot 6C_3H_7NO$ (b), $[(NO_3)_2(H_2O)_2@Pd_3L_4](NO_3)_4 \cdot 2C_6H_6 \cdot Me_2SO$ (c), $[(NO_3)_2@Pd_3L_4](PF_6)_4 \cdot 6Me_2SO$ (d), $[(NO_3)(H_2O)(PF_6)@Pd_3L_4](PF_6)_4 \cdot 3C_3H_7NO$ (e), $[(PF_6)_2@Pd_3L_4](PF_6)_4 \cdot 4C_3H_7NO$ (f), $[(NO_3)_2@Pd_3L_4](CIO_4)_4 \cdot 2C_6H_6 \cdot 4Me_2SO$ (g), $[(NO_3)(H_2O)(CIO_4)@Pd_3L_4](CIO_4)_4 \cdot 3C_3H_7NO$ (h), and $[(CIO_4)_2@Pd_3L_4](CIO_4)_4 \cdot 2Me_2SO$ (i). (solvate molecules were omitted for clarity.)