Influence of the chain length and metal:ligand mole ratio on the selforganisation processes of Cu²⁺ complexes of [1+1] 1*H*-pyrazole azamacrocycles

Alberto Lopera,*^a Ariadna Gil-Martínez,^a Javier Pitarch-Jarque,^a Begoña Verdejo,^a Salvador Blasco,*^a M. Paz Clares,^a Hermas R. Jiménez^b and Enrique García-España*^a

a Instituto de Ciencia Molecular, Universidad de Valencia, c/ Catedrático José Beltrán Martínez 2, 46980 Paterna (Valencia), Spain.

b Departamento de Química Inorgánica, Facultad de Química, Universidad de Valencia, c/ Doctor Moliner 50, 46100 Burjassot (Valencia), Spain

Suplementary Materials

- Table S1. ¹H NMR hyperfine-shifted resonances of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D₂O at pH 5.

- Table S2. ¹H NMR hyperfine-shifted resonances of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D₂O at pH 10.

- **Table S3.** Selected bond distances (Å) and angles (°) for the crystal structure of the $[Cu_2(H_1L2)_2]^{2+}$ cation (2').

-Table S4. Crystallographic data of $[Cu_2(H(H_{-1}L2))_2](ClO_4)_4 \cdot 4H_2O$ (1), $[Cu_2(H_{-1}L2)_2] \cdot 2ClO_4$ (2), $[Cu_2(H_{-1}L2)_2]Cl_{1.56}Br_{0.44} \cdot 2.38H_2O$ (2'), $[Cu_4(H_{-1}L4)_2(OH)_{2.08}](ClO_4)_{2.92}Br_{0.54}Cl_{0.46}$ (3), and $Pd_{2.39}Cu_{1.61}(H_{-1}L4)_2(OH)_2](ClO_4)_2Cl_{1.33}Br_{0.67} \cdot 2.87H_2O$ (4).

- Figure S1. Plot of the species distribution diagram of L1. [L1] = 1.0×10^{-3} M.

- Figure S2. Plot of the species distribution diagram of L2. [L2] = 1.0×10^{-3} M.

- Figure S3. Plot of the species distribution diagram of L3. [L3] = 1.0x10⁻³ M.

- Figure S4. Plot of the species distribution diagram of the system Cu(II)-L1 in 1:1 Cu(II):L molar ratio. [L1] = [Cu(II)] = 1.0x10⁻³ M.

- Figure S5. Plot of the species distribution diagram of the system Cu(II)-L2 in 1:1 Cu(II):L molar ratio. [L2] = [Cu(II)] = 1.0x10⁻³ M.

- Figure S6. Plot of the species distribution diagram of the system Cu(II)-L3 in 1:1 Cu(II):L molar ratio. [L3] = [Cu(II)] = 1.0x10⁻³ M.

Figure S7. Plot of the species distribution diagram of the system Cu(II)-L1 in 2:1 Cu(II):L molar ratio. [L1] = 1.0x10⁻³
 M. [Cu(II)] = 2.0x10⁻³ M.

Figure S8. Plot of the species distribution diagram of the system Cu(II)-L2 in 2:1 Cu(II):L molar ratio. [L2] = 1.0x10⁻³
 M. [Cu(II)] = 2.0x10⁻³ M.

- Figure S9. Plot of the species distribution diagram of the system Cu(II)-L3 in 3:2 Cu(II):L molar ratio. $[L3] = 1.0 \times 10^{-3}$ M. $[Cu(II)] = 1.5 \times 10^{-3}$ M.

Figure S10. Plot of the species distribution diagram of the system Cu(II)-L4 in 3:2 Cu(II):L molar ratio. [L4] = 1.0x10⁻³
 M. [Cu(II)] = 1.5x10⁻³ M.

Figure S11. Plot of the species distribution diagram of the system Cu(II)-L4 in 2:1 Cu(II):L molar ratio. [L4] = 1.0x10⁻³
 M. [Cu(II)] = 2.0x10⁻³ M.

- Figure S12. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L1_2(Br)]^+$ species. HR–ESI– Mass spectra were recorded in water/methanol (50/50 vol/vol). $[L1] = [Cu(II)] = 1.0x10^{-3}$ M.

- Figure S13. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L1_2(CIO_4)]^+$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). $[L1] = [Cu(II)] = 1.0x10^{-3}$ M.

Figure S14. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the [Cu₂H₋₂L2₂(Br)]⁺ species. HR–ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L2] = [Cu(II)] = 1.0x10⁻³ M.

- **Figure S15.** Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L2_2(ClO_4)]^+$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). $[L2] = [Cu(II)] = 1.0x10^{-3}$ M.

- **Figure S16.** Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the specie $[Cu_2H_{-2}L3_2(ClO_4)]^+$ species. HR–ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). $[L3] = [Cu(II)] = 1.0 \times 10^{-3}$ M.

- **Figure S17.** Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_{-1}L3_2(ClO_4)]^{2+}$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L3] = $[Cu(II)] = 1.0x10^{-3}$ M.

- Figure S18. Plot of the ESR spectrum recorded for the system Cu(II)-L2 in 1:1 Cu(II):L molar ratio. The pH values are: 2.60 (blue), 3.64 (red), 5.63 (green), 8.88 (purple), and 10.95 (orange). [L2] = $[Cu(II)] = 1.0x10^{-3}$ M. ESR was recorded in ethylene glycol 30% in water. Experimental conditions: v = 9.47 GHz and T = 77 K. The signals are ESR silent above pH 5.

- Figure S19. UV-vis spectrum for the Cu(II)–L1 system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.27 (blue), 4.04 (red), 6.30 (green) and 10.94 (purple). [L1] = [Cu(II)] = 1.0x10⁻³ M.

- Figure S20. UV-vis spectrum for the Cu(II)–L2 system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.03 (blue), 5.10 (red), 8.01 (green) and 10.54 (purple). [L2] = [Cu(II)] = 1.0x10⁻³ M.

- Figure S21. UV-vis spectrum for the Cu(II)–L3 system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.14 (blue), 4.96 (red), 6.76 (green) and 8.75 (purple). [L3] = [Cu(II)] = 1.0x10⁻³ M.

- Figure S22. 400 MHz ¹H NMR spectra of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D₂O at (a) pH 5 and (b) pH 10. (c) In the region 76/24 ppm, the intensity of the spectrum at pH 10 is multiplied by ten. The asterisks mark the residual solvent (*, H2O; **, HOD).

- **Figure S23.** (a) Partial view of the crystal structure of the cation $[Cu_2(H_{-1}L2)_2]^{2+}$ (2'). Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are not shown. Colour code: carbon (grey), nitrogen (blue), copper (orange). (b)

Stick view with the two macrocycles composing the structure represented in different colours (purple and green) to clarify the discussion in the text.

- Figure S24. Spectroscopic studies of the mixed Cu(II):Pd(II):L4 system in 1:1:1 molar ratio. The pH was adjusted to 8 and the UV-vis spectrum was recorded at time values (min): 20, 40, 60, 80, 100, 120, 180 and 300. [L4] = [Cu(II)] = $[Pd(II)] = 1.0x10^{-3} M.$

- Figure S25. Plot of the absorbance values at 600 nm at different times for the mixed Cu(II):Pd(II):L4 system in 1:1:1 molar ratio. The UV-vis spectrum was recorded at time values (min): 20, 40, 60, 80, 100, 120, 180 and 300. [L4] = $[Cu(II)] = [Pd(II)] = 1.0x10^{-3} M.$

Table S1. ¹H NMR hyperfine-shifted resonances of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D_2O at pH 5.

<u>.</u>	S4 \	Nº of	.	Temperature	Δν1/2	T_2^a
Signai	o(ppm)	protons	Assignments	Dependence	(Hz)	(ms)
а	50.0			anti-Curie	b	b
Ac	58.3				3005	0.11
b	46.7			Curie	b	b
С	41.1		a CU	anti-Curie	1140	0.28
d	22.1	24	<i>и-</i> сп ₂	anti-Curie	b	b
Dc	27.5			anti-Curie	2073	0.15
е	19.9			anti-Curie	b	b
f	11.9			anti-Curie	725	0.44
k	-5.0			Curie	725	0.44
g ^d	8.0			anti-Curie	52	6.1
h ^d	7.6	4	γ-CH ₂	anti-Curie	48	6.6
id	2.5	2	H _m -Pyrazole	anti-Curie	95	3.4
j	0.6	8	β-CH ₂	anti-Curie	249	1.3

 ⁽a) Measured from the line width at half-height. (b) Overlap prevents measurement of this value. (c) Measured at 283 K. (d) Tentative assignments.

Table S2. ¹H NMR hyperfine-shifted resonances of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D₂O at pH 10.

Signal	δ(ppm)	Nº of protons	Assignments	Temperature Dependence	Δν1/2 (Hz)	T ₂ ª (ms)
a'	58.2			Curie	2400	0.13
b'	41.7	22		Indep. of T	1020	0.31
c'	33.0	52	Curie	Curie	1374	0.23
e'	2.2			anti-Curie	260	1.2
ť	1.2			anti-Curie	330	0.96
ď	5.6	6	β -CH ₂ and H _m - Pyrazole	anti-Curie	148	2.2

(a) Measured from the line width at half-height.

Table S3. Selected bond distances (Å) and angles (°) for the crystal structure of the $[Cu_2(H_{-1}L2)_2]^{2+}$ cation (2').

Distance	es (Å)	Angles (°)			
Cu1 - N3	1.927(2)	N3 - Cu1 - N4	80.80(10)		
Cu1 - N9	1.931(2)	N3 - Cu1 - N5	91.98(11)		
Cu1 - N4	2.103(2)	N3 - Cu1 - N9	96.86(10)		
Cu1 - N10	2.082(3)	N4 - Cu1 - N10	101.12(10)		
Cu1 - N5	2.504(3)	N4 - Cu1 - N5	79.16(10)		
Cu1 - N11	2.566(3)	N5 - Cu1 - N9	96.69(10)		
Cu2 - N2	1.934(2)	N5 - Cu1 - N10	93.18(11)		
Cu2 - N8	1.933(2)	N9 - Cu1 - N10	81.58(10)		
Cu2 - N1	2.086(3)	N3 - Cu1 - N11	97.24(10)		
Cu2 - N7	2.088(3)	N4 - Cu1 - N11	91.70(10)		
Cu2 - N6	2.605(3)	N9 - Cu1 - N11	92.85(10)		
Cu2 - N12	2.611(3)	N10 - Cu1 - N11	77.87(10)		
Cu1 - Cu2	3.9167(6)	N1 - Cu2 - N2	81.01(10)		
		N1 - Cu2 - N6	78.03(11)		
		N2 - Cu2 - N6	96.05(10)		
		N2 - Cu2 - N8	96.65(10)		
		N6 - Cu2 - N7	90.93(10)		
		N6 - Cu2 - N8	95.10(10)		
		N1 - Cu2 - N12	94.73(12)		
		N2 - Cu2 - N12	95.38(10)		
		N7 - Cu2 - N12	77.98(11)		
		N8 - Cu2 - N12	92.78(11)		

TableS4.Crystallographicdataof $[Cu_2(H(H_{-1}L2))_2](ClO_4)_4 \cdot 4H_2O$ (1), $[Cu_2(H_{-1}L2)_2] \cdot 2ClO_4$ (2), $[Cu_$

Structure	1	2	2'	3	4
Empirical			$C_{24}H_{50.76}Br_{0.44}Cl_{1.56}$	$C_{14}H_{28}Br_{0.27}CI_{1.73}$	$C_{28}H_{58.25}Br_{0.67}Cl_{1.33}Cu_{1.12}$
formula	$C_{24}H_{54}Cl_4Cu_2N_{12}O_{20}$	$C_{12}H_{23}CICuN_6O_4$	O_4 $Cu_2N_{12}O_{2.38}$ $Cu_2N_6O_7$		$N_{12}O_{13.03}Pd_{2.88}$
Formula weight / g mol ⁻¹	1099.67	414.35	762.99	602.52	1320.73
Temperature / K	293(2)	120.0(1)	293(2)	120.0(1)	120.0(1)
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic
Space group	P -1	P 2 ₁ /c	P 2 ₁ /a	P nma	I 2/m
a / Å	9.2355(5)	11.1975(7)	16.7810(5)	11.1587(5)	12.8708(7)
b / Å	11.6706(7)	8.9313(5)	9.13400(10)	22.0003(10)	19.3357(11)
c / Å	11.9460(9)	16.2321(11)	21.3720(6)	17.5957(7)	19.8511(7)
α/9	112.721(6)	90	90	90	90
β/Չ	99.370(5)	92.643(2)	95.9810(10)	90	104.852(4)
γ / º	109.507(5)	90	90	90	90
V / ų	1054.56(13)	1621.62(17)	3258.02(14)	4319.7(3)	4775.2(4)
Z	1	4	4	8	4
$ ho_{calc}$ g/cm ⁻³	1.732	1.697	1.556	1.853	1.837
μ /mm⁻¹	1.353	1.544	2.015	2.737	2.371
F(000)	568	860	1591	2455	2638
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα

O range / º	3.041-49.994	2.919-45.395	2.761–27.498	2.948-32.525	3.023-29.932
	$-12 \le h \le 11$	$-22 \le h \le 22$	$-21 \le h \le 21$	$-14 \le h \le 16$	$-17 \le h \le 17$
Index ranges	$-12 \le k \le 15$	$-17 \le k \le 17$	$-11 \le k \le 11$	$-33 \le k \le 21$	-27 ≤ <i>k</i> ≤ 15
	-16 ≤ / ≤ 15	-32 ≤ / ≤ 31	-27 ≤ l ≤ 27	-24 ≤ <i>l</i> ≤ 26	-27 ≤ l ≤ 27
Reflections collected	8268	73854	13925	23582	12263
Unique reflections	4730	13349	7452	7246	6206
Data	4730	13349	7452	7246	6206
Restraints	4	0	29	8	29
Parameters	285	303	451	303	338
Goodness- of-fit on <i>F</i> ²	1.073	1.073	1.078	1.030	1.029
Final R	<i>R</i> 1=0.0354	<i>R</i> 1=0.0317	<i>R</i> 1=0.0457	<i>R</i> 1=0.0426	<i>R</i> 1=0.0759
[I>2σ(I)]	wR2=0.0805	wR2=0.0755	wR2=0.1203	wR2=0.0973	wR2=0.2041
Final <i>R</i> indices [all	R1=0.0446	R1=0.0534	R1=0.0809	R1=0.0637	<i>R</i> 1=0.1078
data]	wR2=0.0877	wR2=0.0882	wR2=0.1346	wR2=0.1093	wR2=0.2366
CCDC no.	1953929	1990725	1953930	1953933	1953932

Figure S1. Plot of the species distribution diagram of L1. [L1] = 1.0×10^{-3} M.

Figure S2. Plot of the species distribution diagram of L2. [L2] = 1.0×10^{-3} M.

Figure S3. Plot of the species distribution diagram of L3. [L3] = 1.0×10^{-3} M.

Figure S4. Plot of the species distribution diagram of the system Cu(II)-L1 in 1:1 Cu(II):L molar ratio. [L1] = [Cu(II)] = 1.0x10⁻³ M.

Figure S5. Plot of the species distribution diagram of the system Cu(II)-L2 in 1:1 Cu(II):L molar ratio. [L2] = [Cu(II)] = 1.0x10⁻³ M.

Figure S6. Plot of the species distribution diagram of the system Cu(II)-L3 in 1:1 Cu(II):L molar ratio. [L3] = [Cu(II)] = 1.0x10⁻³ M.

Figure S7. Plot of the species distribution diagram of the system Cu(II)-L1 in 2:1 Cu(II):L molar ratio. [L1] = 1.0×10^{-3} M. [Cu(II)] = 2.0×10^{-3} M.

Figure S8. Plot of the species distribution diagram of the system Cu(II)-L2 in 2:1 Cu(II):L molar ratio. [L2] = 1.0×10^{-3} M. [Cu(II)] = 2.0×10^{-3} M.

Figure S9. Plot of the species distribution diagram of the system Cu(II)-L3 in 3:2 Cu(II):L molar ratio. [L3] = 1.0×10^{-3} M. [Cu(II)] = 1.5×10^{-3} M.

Figure S10. Plot of the species distribution diagram of the system Cu(II)-L4 in 3:2 Cu(II):L molar ratio. [L4] = 1.0×10^{-3} M. [Cu(II)] = 1.5×10^{-3} M.

Figure S11. Plot of the species distribution diagram of the system Cu(II)-L4 in 2:1 Cu(II):L molar ratio. [L4] = 1.0×10^{-3} M. [Cu(II)] = 2.0×10^{-3} M.

Figure S12. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L1_2(Br)]^+$ species. HR–ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L1] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S13. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L1_2(ClO_4)]^+$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L1] = $[Cu(II)] = 1.0x10^{-3}$ M.

Figure S14. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L2_2(Br)]^+$ species. HR–ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L2] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S15. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L2_2(ClO_4)]^+$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). $[L2] = [Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S16. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_2L3_2(CIO_4)]^+$ species. HR– ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L3] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S17. Experimental (top) and simulated (bottom) HR–ESI–Mass peaks for the $[Cu_2H_{-1}L3_2(ClO_4)]^{2+}$ species. HR–ESI–Mass spectra were recorded in water/methanol (50/50 vol/vol). [L3] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S18. Plot of the ESR spectrum recorded for the system Cu(II)-**L2** in 1:1 Cu(II):L molar ratio. The pH values are: 2.60 (blue), 3.64 (red), 5.63 (green), 8.88 (purple), and 10.95 (orange). [**L2**] = [Cu(II)] = 1.0×10^{-3} M. ESR was recorded in ethylene glycol 30% in water. Experimental conditions: v = 9.47 GHz and T = 77 K. The signals are ESR silent above pH 5.

Figure S19. UV-vis spectrum for the Cu(II)–L1 system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.27 (blue), 4.04 (red), 6.30 (green) and 10.94 (purple). [L1] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S20. UV-vis spectrum for the Cu(II)–**L2** system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.03 (blue), 5.10 (red), 8.01 (green) and 10.54 (purple). [**L2**] = [Cu(II)] = 1.0×10^{-3} M.

Figure S21. UV-vis spectrum for the Cu(II)–L3 system in aqueous solution in 1:1 Cu(II):L molar ratio at different pH values: 2.14 (blue), 4.96 (red), 6.76 (green) and 8.75 (purple). [L3] = $[Cu(II)] = 1.0 \times 10^{-3}$ M.

Figure S22. 400 MHz ¹H NMR spectra of the Cu²⁺-L2 system in 1:1 molar ratio recorded at 298 K in D₂O at (a) pH 5 and (b) pH 10. (c) In the region 76/24 ppm, the intensity of the spectrum at pH 10 is multiplied by ten. The asterisks mark the residual solvent (*, H2O; **, HOD).

Figure S23. (a) Partial view of the crystal structure of the cation $[Cu_2(H_{-1}L2)_2]^{2+}$ (2'). Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are not shown. Colour code: carbon (grey), nitrogen (blue), copper (orange). (b) Stick view with the two macrocycles composing the structure represented in different colours (purple and green) to clarify the discussion in the text.

Figure S24. Spectroscopic studies of the mixed Cu(II):Pd(II):L4 system in 1:1:1 molar ratio. The pH was adjusted to 8 and the UV-vis spectrum was recorded at time values (min): 20, 40, 60, 80, 100, 120, 180 and 300. [L4] = [Cu(II)] = $[Pd(II)] = 1.0x10^{-3} M$.

Figure S25. Plot of the absorbance values at 600 nm at different times for the mixed Cu(II):Pd(II):L4 system in 1:1:1 molar ratio. The UV-vis spectrum was recorded at time values (min): 20, 40, 60, 80, 100, 120, 180 and 300. [L4] = $[Cu(II)] = [Pd(II)] = 1.0 \times 10^{-3} \text{ M}.$