Site-Selective Halogenation of Mixed-valent Vanadium Oxide

Clusters

Michela L. Maiola,^a Brittney E. Petel,^a William W. Brennessel,^a Ellen M. Matson*^a

^aDepartment of Chemistry, University of Rochester, Rochester, New York 14627, United States Corresponding author email: matson@chem.rochester.edu

Supporting Information Table of Contents:

Procedure for NMR integration	S3
Figure S1. ¹ H NMR Spectrum of AlCl ₃ with $[V_6O_7(OC_2H_5)_{12}]^n$	S3
Figure S2. ¹ H NMR Spectrum of TMSCl with 1-V ₆ O ₆ Cl ¹⁻	S3
Figure S3. ¹ H NMR Spectrum of TiCl ₃ (thf) ₃ with $3-V_6O_7^0$	S4
Figure S4. ¹ H NMR Spectrum of 1-V ₆ O ₆ Cl ¹⁻ and 4-V ₆ O ₆ Cl ⁰	S4
Table S1. Crystallographic parameters of 4-V ₆ O ₆ Cl ⁰ , 6-V ₆ O ₆ OTf, and 5-V ₆ O ₆ Cl ⁺	
Figure S5. ¹ H NMR Spectrum of TiCl ₃ (thf) ₃ with $[V_6O_7(OC_2H_5)_{12}]^2$	S6
Figure S6. ¹ H NMR Spectrum of TiCl ₃ (thf) ₃ with $3-V_6O_7^0$	S6
Figure S7. CV of TiCl ₃ (thf) ₃	
Figure S8. ¹ H NMR Spectrum of 4-V ₆ O ₆ Cl ⁰ and 6-V ₆ O ₆ OTf	S7
Figure S9. ESI-MS (-)ve of 6-V ₆ O ₆ OTf	
Figure S10. ¹ H NMR Spectrum of $5-V_6O_6Cl^+$	S8

¹**H NMR yields:** Yields for $4-V_6O_6Cl^0$ and for $1-V_6O_6Cl^{1-}$ via the chlorination of $[V_6O_7(OC_2H_5)_{12}]^{2-}$ with TiCl₃(thf)₃ were obtained by ¹H NMR yields by integration against a known amount of internal standard, pyridine.

Figure S1. ¹H NMR spectra of AlCl₃ reactions with $[V_6O_7(OC_2H_5)_{12}]^{1-}$ (**2-** $V_6O_7^{1-}$, bottom, red) and $V_6O_7(OC_2H_5)_{12}$ (**3-** $V_6O_7^{0}$, top, blue) at 50 °C for 24 hours in CDCl₃. Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, **2-** $V_6O_7^{1-}$.

Figure S2. ¹H NMR spectra of $[V_6O_7(OC_2H_5)_{12}]^{1-}$ (**2-V**₆**O**7¹⁻, bottom, red) and TMSCl reactions with $[V_6O_7(OC_2H_5)_{12}]^{1-}$ (**2-V**₆**O**7¹⁻) at 70 °C for 3 hours (middle, green) and at 70 °C for 24 hours (top, blue) in CDCl₃. Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, **2-V**₆**O**7¹⁻. Resonances labeled as DCM correspond to dichloromethane.

Figure S3. ¹H NMR spectra of [V₆O₇(OC₂H₅)₁₂]¹⁻ (2-V₆O₇¹⁻, bottom, red), [V₆O₆Cl(OC₂H₅)₁₂]¹⁻ (1-V₆O₆Cl¹⁻, middle, green), and the reaction of TiCl₃(thf)₃ with 2-V₆O₇¹⁻ at 50 °C for 5 hours in CDCl₃. Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, 2-V₆O₇¹⁻, while signals labeled as "TEA" correspond to the tetraethylammonium cation of the independently synthesized sample of 1-V₆O₆Cl¹⁻. Resonances labeled as DCM correspond to dichloromethane.

Figure S4. ¹H NMR spectra of $[V_6O_6Cl(OC_2H_5)_{12}]^{1-}$ (**1-V₆O₆Cl¹⁻**, bottom, red) and $[V_6O_6Cl(OC_2H_5)_{12}]^0$ (**4-V₆O₆Cl⁰**, top, blue) in CDCl₃. Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, **2-V₆O₇**¹⁻, while signals labeled as "TEA" correspond to the tetraethylammonium cation of the independently synthesized sample of **1-V₆O₆Cl¹⁻**. Resonances labeled as DCM correspond to dichloromethane.

Molecule	$4-V_6O_6Cl^0$	6-V ₆ O ₆ OTf	$5-V_6O_6Cl^+$
Empirical formula	$C_{24}H_{60}ClO_{18}V_{6}$	$C_{25}H_{60}F_{3}O_{21}SV_{6}$	$C_{28}H_{70}Cl_6O_{26}V_6W_3$
Formula weight	977.82	1091.43	1892.73
CCDC	1990064	1990063	1990062
Temperature	223.00(10) K	100.00(10) K	100.00(10) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	I2/m	P-1	P-1
Unit cell dimensions	a = 10.7617(7) Å b = 17.7653(9) Å c = 10.9667(7) Å $\alpha = 90^{\circ}$ $\beta = 107.866(7)^{\circ}$ $\gamma = 90^{\circ}$	a = 10.7375(2) Å b = 11.6187(3) Å c = 19.2768(4) Å $\alpha = 83.447(2)^{\circ}$ $\beta = 77.638(2)^{\circ}$ $\gamma = 64.530(2)^{\circ}$	a = 10.7819(4) Å b = 15.5823(4) Å c = 16.9994(5) Å $\alpha = 81.532(2)^{\circ}$ $\beta = 87.046(3)^{\circ}$ $\gamma = 83.092(3)^{\circ}$
Volume	1995.5(2) Å ₃	2120.16(9) Å ₃	2802.71(15) Å ₃
Z	2	2	2
Reflections collected	2173	35608	48081
Independent reflections	2173	8882 [R(int) = 0.0763]	11712 [R(int) = 0.1213]
Goodness-of- fit on F2	1.040	1.044	1.082
Final R indices [I>2sigma(I)]	R1 = 0.0712, wR2 = 0.2043	R1 = 0.0732, wR2 = 0.2077	R1 = 0.1002, WR2 = 0.2861

Table S1. Crystallographic Parameters of 4-V₆O₆Cl⁰, 6-V₆O₆OTf, and 5-V₆O₆Cl⁺.

Comments on Disorder in Complex 5-V₆O₆Cl⁺. Three ethoxy ligands of the vanadium cluster are modeled as disordered over two positions each: O10-C7-C8, 0.51(3):0.49(3), O14-C15-C16, 0.60(3):0.40(3), O17-C21-C22, 0.52(3):0.48(3). A major portion of the tungsten cluster was modeled as disordered over two positions (0.740(1):0.260(1)). An additional methyl group of an ethoxy ligand on this cluster was also modeled as disordered over two positions 0.77(6):0.23(6)).

For each disordered moiety, analogous bond lengths and angles between the two defined positions were restrained to be similar. Anisotropic displacement parameters for proximal atoms were constrained to be equivalent and/or restrained to be similar.

The larger-than-expected residual peaks and holes in the difference Fourier map that appear near the heavy tungsten atoms may be related to absorption correction errors. A face-indexing absorption correction of the tiny nearly-cubic crystal reduced the absolute value of the residuals very slightly over spherical and empirical absorption corrections. The crystal was cracked, however, with a 85:15 component mass ratio. No non-merohedral twin modeling was successful, likely since the reflections of the two components could not be resolved well. To date no better crystals have been found for analysis.

Figure S5. ¹H NMR spectra of $[V_6O_7(OC_2H_5)_{12}]^{2-}$ (bottom, red) and the reaction of TiCl₃(thf)₃ with $[V_6O_7(OC_2H_5)_{12}]^{2-}$ (top, blue) at 70°C for 1 hour in CDCl₃. Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, **2-V_6O₇¹⁻**. Signals labeled as "thf" correspond to tetrahydrofuran.

Figure S6. ¹H NMR spectra of the reaction of TiCl₃(thf)₃ with $V_6O_7(OC_2H_5)_{12}$ (**3-** $V_6O_7^0$) at 21 °C for 1 hour in CDCl₃. Diamagnetic region has been labeled indicating organic solvent impurities (e.g. diethyl ether, dichloromethane).

Figure S7. Cyclic voltammogram of TiCl₃(thf)₃ collected in dichloromethane with 0.1 M [ⁿBu₄N][PF₆] as the supporting electrolyte.

Figure S8. ¹H NMR spectra of V₆O₆Cl(OC₂H₅)₁₂ (**4-V**₆**O**₆Cl⁰, bottom, red) and the reaction of AgOTf with **4-V**₆**O**₆Cl⁰ (top, blue) at 21 °C for 24 hours in CDCl₃. Resonances labeled as "TEA" correspond to residual tetraethylammonium salts from independent synthesis.

Figure S9. ESI-MS (-)ve of $6-V_6O_6OTf (m/z = 1091 \text{ amu}; [V_6O_6(OC_2H_5)_{12}]OTf)$.

Figure S10. ¹H NMR spectra of $[V_6O_6Cl(OC_2H_5)_{12}]^{1+}$ (**5-** $V_6O_6Cl^+$) in CD₂Cl₂ synthesized by the reaction of WCl₆ with $V_6O_7(OC_2H_5)_{12}$ (**3-** $V_6O_7^0$). Resonances labeled as "TBA" correspond to the tetrabutylammonium counter ion of the starting material, **2-** $V_6O_7^{1-}$.