SUPPORT INFORMATION

Spectroscopic characterization of a new Re(I) tricarbonyl complex with a thiosemicarbazone derivative: towards sensing and electrocatalytic applications

Breno L. Souza, Leandro A. Faustino, Fernando S. Prado¹, Renato N. Sampaio, Pedro I. S. Maia, Antonio Eduardo H. Machado and Antonio Otavio T. Patrocinio

Figure S1. Photo of the homemade H-cell employed in the CPE experiments for CO_2 reduction

Figure S2. ATR FTIR of (A) phet e (B) fac-[ReCl(CO)₃(phet)].

Figure S3 ¹H-RMN of free phet and *fac*-[ReCl(CO)₃(phet)] in DMSO d₆; 400 MHz.

Figure S4. H-H COSY spectrum of phet and fac-[ReCl(CO)₃(phet)] in , DMSO d₆, 400 MHz.

Figure S5. HMBC spectrum of phet in DMSO d₆, 400 MHz.

Figure S6. HSQC spectrum of phet in DMSO d₆, 400 MHz.

LUMO	НОМО	HOMO-1
HOMO-2	HOMO-3	HOMO-4

Figure S7. Isosurface plots of molecular orbitals of phet and fac-[ReCl(CO)₃(phet)].

LUMO+1	LUMO	НОМО
t tot		
HOMO-1	HOMO-2	HOMO-4
	A A A	

Figure S8. Theoretical (-.-) and experimental (—) in Acetonitrile electronic spectra of fac-[ReCl(CO)₃(phet)]. The bars correspond to the calculated oscillator strength.

Figure S9. Absorption (—) and emission spectra (----) of *fac*-[ReCl(CO)₃(phen)] (A, λ_{exc} = 365 nm), free ligand phet (B, λ_{exc} = 400 nm) and *fac*-[ReCl(CO)₃(phet)] (C, λ_{exc} = 400 nm) in acetonitrile solution at 298 K.

Figure S10. Emission spectra of *fac*-[ReCl(CO)₃(phet)] λ_{exc} = 400 nm in acetonitrile saturated with (—) argon or O₂ (—) O₂

Figure S11. Mono exponential fit (——) of the kinetic traces (\circ) of the bleaching at 2024 cm⁻¹(A) or of the peak decay at 2024 cm⁻¹ (B).

Figure S12. Stacked ¹H-NMR spectra of 0.01 M *fac*-[ReCl(CO)₃(phet)] upon addition of OH⁻ in DMSO-d₆–5% water at 298 K. Numbers on the left correspond to the equivalence of anions added.

Figure S13. (A) Spectrophotometric titration data monitored at (—) λ_{basic} = 480 nm and (—) λ_{acid} = 445 nm wavelengths. (B)

Table S1. Deprotonation thermodynamic parameters of fac-[ReCl(CO)₃(phet)], T = 298,15 K.

Deprotonation	$\Delta G_R / KJ mol^{-1}$	ΔH_R	T∆S _R
H _a	-13.89	-23.14	-9.25
H _b	-5.03	-7.51	-2.48

Figure S14. Titration Zn²⁺ with *fac*-[ReCl(CO)₃(phet)]

Figure S15. Cyclic Voltammetry of fac-[ReCl(CO)₃(phdo)] (red) and fac-[ReCl(CO)₃(phet)] (blue); 0,1 mol.L⁻¹ de TBAPF₆ support electrolyte in carbonate propylene. The dashed lines correspond to the blank.

Figure S16. Isosurface plot of the most stable single-occupied molecular orbital of the fac-[ReCl(CO)₃(phet)]^{•+} radical

Figure S17. Cyclic voltammetries at different scan rates of the Fc^+/Fc redox pair in CH₃CN (A), free phet in propylene carbonate (B) or of *fac*-[ReCl(CO)₃(phet)] in CH₃CN (C). In (D) it is shown the dependence of the peak current on the square root of the scan rate for the complex *fac*-[ReCl(CO)₃(phet)].

