Supporting Information

Immobilization of N-oxide functionality into NbO-type MOFs for significantly enhanced C₂H₂/CH₄ and CO₂/CH₄ separations

Tingting Xu, Lihui Fan, Zhenzhen Jiang, Ping Zhou, Ziruo Li, Huangyan Lu and Yabing He*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

Fig. S1 The experimental and simulated PXRD patterns of (a) ZJNU-18, (b) ZJNU-19, and (c) ZJNU-20.

Fig. S2 TGA curves of the as-synthesized (a) ZJNU-18, (b) ZJNU-19, and (c) ZJNU-20 under N_2 atmosphere.

Fig. S3 Comparison of FTIR spectra of (a) ZJNU-18 and its ligand H_4L3 , (b) ZJNU-19 and its ligand H_4L1 , and (c) ZJNU-20 and its ligand H_4L2 .

 $S_{\text{BET}} = \frac{1}{(3.39612 \times 10^{-7} + 0.00182)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2391 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.00164)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2654 \text{ m}^2 \text{ g}^{-1}}$ BET constant $C = 1 + 0.00182/3.39612 \times 10^{-7} = 5360$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01347$$

Fig. S4 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-18**.

 $S_{\text{BET}} = 1/(4.23864 \times 10^{-7} + 0.00201)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2165 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00177)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2459 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00201/4.23864 \times 10^{-7} = 4743$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01431$$

Fig. S5 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-19**.

 $S_{\text{BET}} = \frac{1}{(6.83907 \times 10^{-7} + 0.00202)} / 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2154 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.00173)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2516 \text{ m}^2 \text{ g}^{-1}}$ BET constant $C = 1 + 0.00202 / 6.83907 \times 10^{-7} = 2955$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01806$$

Fig. S6 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-20**.

Fig. S7 Pure-component isotherms of (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-18** at four different temperatures of 298 K, 295 K, 288 K, and 278 K. Solid and open symbols represent adsorption and desorption data, respectively. STP stands for standard temperature and pressure.

Fig. S8 Pure-component isotherms of (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-19** at four different temperatures of 298 K, 295 K, 288 K, and 278 K. Solid and open symbols represent adsorption and desorption data, respectively. STP stands for standard temperature and pressure.

Fig. S9 Pure-component isotherms of (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-20** at four different temperatures of 298 K, 295 K, 288 K, and 278 K. Solid and open symbols represent adsorption and desorption data, respectively. STP stands for standard temperature and pressure.

Fig. S10 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-18** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S11 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-19** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S12 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-20** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S13 IAST calculations of (a) C_2H_2/CH_4 and (b) CO_2/CH_4 adsorption selectivities of **ZJNU-18** for the equimolar binary gas mixtures at three different temperatures of 298 K, 288 K, and 278 K.

Fig. S14 IAST calculations of (a) C_2H_2/CH_4 and (b) CO_2/CH_4 adsorption selectivities of **ZJNU-19** for the equimolar binary gas mixtures at three different temperatures of 298 K, 288 K, and 278 K.

Fig. S15 IAST calculations of (a) C_2H_2/CH_4 and (b) CO_2/CH_4 adsorption selectivities of **ZJNU-20** for the equimolar binary gas mixtures at three different temperatures of 298 K, 288 K, and 278 K.

Г Т Т Т Т Т ppm

Fig. S16 ¹H and ¹³C NMR spectra.

Adsorbates	BP (K)	<i>Т</i> _с (К)	p _c (bar)	Kinetic diameter (Å)	Molecular dimension (Å)	Polarizability $(\times 10^{25} \text{ cm}^3)$	Dipole moment (×10 ¹⁸ esu cm)	Quadruple moment (×10 ²⁶ esu cm ²)
C_2H_2	188.40	308.30	61.14	3.3	3.3×3.3×5.7	33.3-39.3	0	+7.5
CO_2	194.65	304.12	73.74	3.3	3.2×3.3×5.4	29.11	0	-4.3
CH_4	111.66	190.56	45.99	3.758	3.7×3.7×3.7	25.93	0	0

Table S1. Summarizes of physical parameters of C₂H₂, CO₂, and CH₄

BP: normal boiling point; T_c : critical temperature; p_c : critical pressure

MOFs	ZJNU-18	ZJNU-19	ZJNU-20	
Empirical formula	$C_{37}H_{52}Cu_2N_6O_{16}$	$C_{37}H_{50}Cu_2N_6O_{16}$	$C_{37}H_{50}Cu_2N_6O_{16}$	
Formula weight	963.92	961.91	961.91	
λ (Å)	1.54178	0.71073	1.54178	
Crystal system	Trigonal	Trigonal	Trigonal	
Space group	R-3m:H	R-3m:H	R-3m:H	
	<i>a</i> = 18.5593(10) Å	<i>a</i> = 18.6199(3) Å	<i>a</i> = 18.5543(7)) Å	
	<i>b</i> = 18.5593(10) Å	<i>b</i> = 18.6199(3) Å	b = 18.5543(7) Å	
Unit call dimensions	c = 38.480(2) Å	c = 38.2895(8) Å	c = 38.4604(19) Å	
Unit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	
$V(\text{\AA}^3)$	11478.5(14)	11496.5(4)	11466.6(10)	
Ζ	9	9	9	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.255	1.250	1.254	
$\mu (\mathrm{mm}^{-1})$	1.584	0.897	1.586	
F(000)	4518	4500	4500	
θ range for data collection (°)	4.765 to 72.206	2.708 to 27.494	2.980 to 72.417	
	$-17 \le h \le 22$	$-24 \le h \le 23$	$-22 \le h \le 13$	
Limiting indices	$-22 \le k \le 22$	$-19 \le k \le 24$	$-22 \le k \le 17$	
	$-47 \le l \le 26$	$-37 \le l \le 49$	$-47 \le l \le 31$	
Reflections collected / unique	16630 / 2733	19677 / 3157	12356 / 2761	
R _{int}	0.0337	0.0183	0.0576	
	Full-matrix	Full-matrix	Full-matrix	
Refinement method	least-squares on F^2	least-squares on F^2	least-squares on F^2	
Data/restraints/parameters	2733 / 92 / 122	3157 / 97 / 126	2761 / 99 / 131	
Goodness-of-fit on F^2	1.083	1.078	0.970	
	$R_1 = 0.0430$	$R_1 = 0.0366$	$R_I = 0.0515$	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$wR_2 = 0.1334$	$wR_2 = 0.1208$	$wR_2 = 0.1443$	
\mathbf{D} is the equation $(-11, 1, \infty)$	$R_1 = 0.0461$	$R_1 = 0.0386$	$R_1 = 0.0601$	
<i>k</i> indices (all data)	$wR_2 = 0.1391$	$wR_2 = 0.1227$	$wR_2 = 0.1523$	
Largest diff. peak and hole $(e^{-}A^{-3})$	0.685 and -0.319	0.736 and -0.472	0.761 and -0.331	
CCDC	1992051	1992049	1992050	

Table S2 Crystal data and structure refinement for ZJNU-18, ZJNU-19, andZJNU-20.

Adsorbates	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 $(kPa)^{-\nu}$	E (kJ mol ⁻¹)	V	R^2
C_2H_2	26.45879	6.96469×10 ⁻⁶	19.139	0.71195	0.99986
CO ₂	27.00081	1.79578×10 ⁻⁷	22.531	1	0.99998
CH ₄	10.88758	1.7423×10 ⁻⁶	15.310	1	0.99987

Table S3 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-18**.

Table S4 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-19**.

Adsorbates	$q_{\rm sat}$ (mmol g ⁻¹)	b ₀ (kPa) ^{-ν}	E (kJ mol ⁻¹)	V	R^2
C ₂ H ₂ 17.81701		6.16506×10 ⁻⁶	21.237	0.74305	0.9999
CO ₂	21.53152	1.70584×10 ⁻⁷	23.905	1	0.99997
CH ₄	10.06031	1.11068×10 ⁻⁶	16.773	1	0.999999

Table S5 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-20**.

Adsorbates	$q_{ m sat}$	b_0	E	v	R^2	
	$(\text{mmol } g^{-1})$	$(kPa)^{-\nu}$	$(kJ mol^{-1})$			
C_2H_2	18.52123	6.4074×10 ⁻⁶	21.071	0.72047	0.99967	
CO ₂	21.15993	1.86027×10 ⁻⁷	23.666	1	0.99988	
CH ₄	9.42552	1.20995×10 ⁻⁶	16.750	1	0.99998	

Table S6 Summary of pore textural and gas adsorption properties of NOTT-101,ZJNU-35, ZJNU-18, ZJNU-19 and ZJNU-20.

MOFs	NOTT-101	ZJNU-35	ZJNU-18	ZJNU-19	ZJNU-20	
$S_{\rm BET}/S_{\rm Langmuir}$ (m ² g ⁻¹)		2755/2961	2591/2827	2391/2654	2165/2459	2154/2516
$V_{\rm p}~({\rm cm}^3~{\rm g}^{-1})$	1.058	1.006	0.955	0.882	0.902	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$		0.6838	0.7001	0.7087	0.7284	0.7303
	298 K	176.6	179.8	180.5	204.9	199.1
C ₂ H ₂ uptake ^{<i>a</i>}	295 K	186.8	189.1	191.5	214.5	210.0
$(cm^3 g^{-1}, STP)$	288 K	212.3	216.5	216.9	233.7	229.9
	278 K	258.1	258.3	254.9	262.4	258.2
	298 K	85.0	88.4	88.4	106.5	103.8
CO ₂ uptake ^{<i>a</i>}	295 K	90.0	94.8	95.5	114.7	111.9
$(\mathrm{cm}^3 \mathrm{g}^{-1}, \mathrm{STP})$	288 K	109.1	113.8	115.0	136.9	133.1
	278 K	141.2	146.8	150.0	174.6	170.6
	298 K	20.8	20.3	20.0	21.1	21.2
CH ₄ uptake ^a	295 K	21.2	21.5	21.3	22.5	22.6
$(\mathrm{cm}^3 \mathrm{g}^{-1}, \mathrm{STP})$	288 K	23.7	25.1	24.7	26.1	26.2
	278 K	29.0	30.9	29.9	32.5	32.4
C ₂ H ₂ /CH ₄	298 K	26.7	28.7	27.7	42.2	42.1
(v/v = 1/1)	288 K	30.3	31.8	32.1	50.6	50.9
IAST selectivity ^a	278 K	35.3	36.4	38.6	62.7	64.8
CO ₂ /CH ₄	298 K	4.8	5.2	5.1	6.4	6.2
(v/v = 1/1)	288 K	5.6	5.7	5.8	7.3	7.1
IAST selectivity ^a	278 K	6.6	6.5	6.7	8.5	8.3

 $S_{\text{BET}}/S_{\text{Langmuir}} = \text{BET}$ and Langmuir surface areas; $V_{\text{p}} = \text{total pore volume}$; $D_{\text{c}} = \text{calculated framework}$ density; ^{*a*} at 1 atm; STP = standard temperature and pressure