Electronic Supporting Information (ESI)

Structures and paramagnetism of five heterometallic pentanuclear metal strings containing as many as four different metals: $\mathbf{N i P t C o} \mathbf{2}_{2} \mathbf{P d}(\text { tpda })_{4} \mathrm{Cl}_{2}$

Ming-Chuan Cheng, Rui-Xiang Huang, Yu-Chiao Liu, Ming-Hsi Chiang, Gene-Hsiang Lee, You Song, Tien-Sung Lin and Shie-Ming Peng*

Table of Contents

Experimental Section

Physical measurements, Methods and Spin Hamiltonian
Materials and Methods
Synthesis

NMR and Mass Spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPdCo}_{3}(\mathrm{tpda})_{4} \mathrm{Cl}_{2}\right]$ (1) in CDCl_{3}
Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPtCo}_{3}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (2) in CDCl_{3}
Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (3) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (4) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
Figure S5: 2D COSY NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (4) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (full range)
Figure S6: 2D COSY NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (4) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (small range)
Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (5) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
Figure S8: High resolution MALDI spectrum and simulation of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tpda})_{4} \mathrm{Cl}_{2}\right](4)$ and $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$

Crystallographic Section

Figure S9: The crystal structures of $\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{1})$ and $\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (2)
Figure S10: The crystal structures of $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{3})$ and $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](4)$.
Figure S11: The crystal structure of $\left[\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]$
Figure S12: The selected distances of related compounds
Figure S13: The cumulative intensity distribution of reflection statistics in 3, 4 and 5
Table S1: Crystal data and structure refinement details for $\mathbf{1} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S2: Crystal data and structure refinement details for $\mathbf{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Table S3: Crystal data and structure refinement details for $\mathbf{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S4: Crystal data and structure refinement details for $\mathbf{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S5: Crystal data and structure refinement details for $\mathbf{5} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table S6: Crystal data and structure refinement details for $\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$

Experimental Section

Physical measurements, Methods and Spin Hamiltonian

Crystal data was collected on a Bruker SMART Apex and Bruker D8 VENTURE diffractometer with monochromatized Mo-Ka radiation (lambda $=0.71073 \AA$) at $T=150(2) \mathrm{K}$. Cell parameters were retrieved and refined using $D E N Z O S M N$ software on all observed reflections. Data reduction was performed with the $D E N Z O S M N$ software. Empirical absorption was based on the symmetryequivalent reflections and absorption corrections were applied with the SORTAV program. All the structures were solved and refined with SHELXL-2014 or SHELXL-2018 by full-matrix least squares on F^{2} values with the Olex2 interface. ${ }^{1}$ The diagrams of cumulative intensity distribution in reflection statistics were generated by Olex2 program. ${ }^{1}$ The hydrogen atoms were included in calculated positions and refined with a riding model. IR spectra were obtained with a Nicolet Fourier-Transform in the range $450-4000 \mathrm{~cm}^{-1}$. The mass spectra were measured by Bruker New ultrafleXtreme ${ }^{\mathrm{TM}}$ MALDI-TOF mass spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker AMX 300 MHz spectrometer.

Magnetic measurements were carried out with a Quantum Design MPMS7 SQUID magnetometer operating at a magnetic field of 3000 G between 4 and 300 K . The diamagnetic corrections were evaluated from Pascal's constants. The program MagProp in the DAVE packaged software ${ }^{2}$ was applied to fit the magnetic susceptibility by means of the spin Hamiltonian equations (1) and (2). In compounds $\mathbf{1}$ and $\mathbf{2}$, the equation (1) was applied to obtain the exchange coupling constant J between terminal $\mathrm{Co}^{2+}\left(S_{1}=3 / 2\right)$ and low spin of tricobalt unit ($S_{2}=1 / 2 ; 4 \sim 150 \mathrm{~K}$). The zero-field splitting parameter $\left(D_{1}\right)$ of terminal Co^{2+} is included in this fitting. Unfortunately, we failed to fit the data for the high temperatures region $(150-300 \mathrm{~K})$ due to the uncertainties and the complication of $2^{\text {nd }}$ spin crossover of the inner tricobalt system at high temperatures (refer to J. Am. Chem. Soc., 2000, 122, 6226-6236). As for the isolated spin center in compound 4, the ZFS parameter (D) of $\operatorname{Co}(\mathrm{II})$ were included in equation $(2)(4 \sim 300 \mathrm{~K})$. We neglect the higher order terms and the ZFS E term which are two to three orders of magnitude smaller the other terms. Similarly, we applied equation (2) to fit the data for compound 5 .
$\hat{H}=-2 \int \widehat{S}_{1} \Im_{2}+\beta\left(g_{1} \Im_{1}+g_{2} S_{2}\right) H+D_{1}\left[S_{1 z}^{2}-(1 / 3) S_{1}\left(S_{1}+1\right)\right]$
$\hat{H}=\beta H \cdot g \cdot \hat{S}+D\left[\hat{S}_{z}^{2}-(1 / 3) S(S+1)\right]$

Where J is the exchange coupling constant, $g \beta H S$ is the electronic Zeeman interaction, D is the zero-field splitting (ZFS).

Materials and Methods

All manipulations were carried out under argon or nitrogen atmosphere by using standard Schlenk techniques unless indicated otherwise. Solvents were purified by standard methods and freshly distilled under nitrogen atmosphere prior to use. Anhydrous $\mathrm{CoCl}_{2}, \mathrm{Co}(\mathrm{OAc})_{2}$ and the ${ }^{t} \mathrm{BuOK}$ were used as
received from commercial sources. The 2,6-bis(2-pyridylamino)pyridine $\left(\mathrm{H}_{2}\right.$ tpda $),{ }^{3} \mathrm{Bis}(2-$ pyridyl)amine $(\mathrm{Hdpa})^{4}, \mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2},{ }^{5}$ and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}{ }^{6}$ were synthesized following published procedures.

Synthesis

$\left[\mathrm{CoPdCo}_{3}(\text { (tdpa })_{4} \mathrm{Cl}_{2}\right](1):$

In a 250 mL Erlenmeyer flask, H_{2} tpda ($526 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(156 \mathrm{mg}, 0.6 \mathrm{mmol})$ and anhydrous CoCl_{2} ($260 \mathrm{mg}, 2 \mathrm{mmol}$) were mixed with 40 g naphthalene under Argon. The mixture was heated to $150^{\circ} \mathrm{C}$ for 1 hour. After that, the temperature was adjusted to $220^{\circ} \mathrm{C}$ for another 2 hours. The brown mixture was cooled to room temperature and the naphthalene was solidified. A solid of t-BuOK $\left(421 \mathrm{mg}, 3.75 \mathrm{mmol}\right.$) was added into the flask. This mixture was then heated to $150^{\circ} \mathrm{C}$ for 15 mins under argon. The brown precipitate was dissolved, and the solution turned to dark red gradually. The temperature was then increased to $220^{\circ} \mathrm{C}$ (refluxing naphthalene) and kept at this temperature for 8 hours. This dark red solution was cooled to room temperature and treated it with hot hexane (200 mL) to precipitate the metal complex. After filtration, the brown solid was subsequently extracted with 150 $\mathrm{ml} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The red solution was condensed to 30 mL . Then, a 40 mL of MeOH was added. The solution was slowly evaporated by rotatory evaporation without water bath until red micro-crystal precipitated. The crystal was collected and washed with ether. The dark red crystal was obtained by diffusion of diethyl ether into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex. ($200 \mathrm{mg}, 27 \%$ yield). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1600 \mathrm{~m}, ~, 1547 \mathrm{~m}, 1471 \mathrm{~m}, 1450 \mathrm{~m}, 1407 \mathrm{~s}, 1356 \mathrm{~m}, 1338 \mathrm{~m}, 1155 \mathrm{~m}, 765 \mathrm{~m} . \mathrm{MS}(\mathrm{MALDI}) \mathrm{m} / \mathrm{z}: 1458$ $[\mathrm{M}]^{+}, 1423[\mathrm{M}-\mathrm{Cl}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 83.14(\mathrm{~b}, 4 \mathrm{H}), 63.10(4 \mathrm{H}), 32.34(4 \mathrm{H})$, $31.03(4 \mathrm{H}), 17.15(4 \mathrm{H}), 14.41(4 \mathrm{H}), 10.76(4 \mathrm{H}), 8.63(4 \mathrm{H}), 5.48(4 \mathrm{H}), 4.47(4 \mathrm{H}), 4.15(4 \mathrm{H})$. Elemental analysis (\%): calcd. C 49.42, H 3.04, N 19.21; found: C 49.59, H 3.10, N 19.12

$\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{2}):$

The compound 2 was synthesized by using the same reaction conditions as above description, except that the $\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(209 \mathrm{mg}, 0.6 \mathrm{mmol})$ was applied as Pt^{2+} precursor. ($153 \mathrm{mg}, 20 \%$ yield). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1600 \mathrm{~m}, ~, 1547 \mathrm{~m}, 1472 \mathrm{~m}, 1451 \mathrm{~m}, 1406 \mathrm{~s}, 1350 \mathrm{~m}, 1333 \mathrm{~m}, 1153 \mathrm{~m}, 766 \mathrm{~m}$. MS(MALDI) $m / z: 1547[\mathrm{M}]^{+}, 1511[\mathrm{M}-\mathrm{Cl}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 60.74(\mathrm{~b}, 4 \mathrm{H})$, $49.84(4 \mathrm{H}), 24.89(4 \mathrm{H}), 19.81(4 \mathrm{H}), 18.34(4 \mathrm{H}), 15.93(4 \mathrm{H}), 13.49(4 \mathrm{H}), 9.11(4 \mathrm{H}), 8.23(4 \mathrm{H}), 6.22$ $(4 \mathrm{H}), 3.41(4 \mathrm{H})$. Elemental analysis (\%): calcd. C 46.59, H 2.87, N 18.11; found: C 46.73, H 2.98, N 18.02

$\left[\mathrm{CoPdCo}_{2} \mathbf{P d}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{3}):$

In a 150 mL Erlenmeyer flask, the $\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](1)(95 \mathrm{mg}, 0.065 \mathrm{mmol})$ and anhydrous $\mathrm{Co}(\mathrm{OAc})_{2}(35 \mathrm{mg}, 0.2 \mathrm{mmol})$ were mixed with 30 g naphthalene under Argon. The mixture was heated to $200^{\circ} \mathrm{C}$ and then an 8 mL of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ was dropwise added into the flask over a time period of 25 mins . After addition, the temperature was adjusted to $220^{\circ} \mathrm{C}$ for
another 35 mins. The brown solution was cooled to room temperature. The solidified naphthalene was treated with 100 mL hot hexane. The brown precipitate was collected by filtration and extracted by $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by short silica gel column chromatography. The trace of unreacted 1 was flashed off by using 20% (Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the product was afforded by using 50% (Acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as eluent. The dark red crystal was obtained by diffusion of ether into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex. ($39 \mathrm{mg}, 40 \%$ yield). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1602 \mathrm{~m}, ~, 1575 \mathrm{~m}, 1544 \mathrm{~m}, 1474$ $\mathrm{m}, 1452 \mathrm{~m}, 1421 \mathrm{~s}, 1355 \mathrm{~m}, 1335 \mathrm{~m}, 1154 \mathrm{~m}, 766 \mathrm{~m}, 731 \mathrm{~m} . \mathrm{MS}(\mathrm{MALDI}) \mathrm{m} / \mathrm{z}: 1470[\mathrm{M}-\mathrm{Cl}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm}) 96.79(\mathrm{~b}, 4 \mathrm{H}), 77.01(\mathrm{~s}, 4 \mathrm{H}), 34.81(\mathrm{~s}, 4 \mathrm{H}), 11.53(\mathrm{~s}, 4 \mathrm{H}), 10.51$ $(\mathrm{d}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 4 \mathrm{H}), 6.92(\mathrm{~m}, 8 \mathrm{H}), 6.44(\mathrm{t}, 4 \mathrm{H}), 4.96(\mathrm{~d}, 4 \mathrm{H}), 4.01(\mathrm{~d}, 4 \mathrm{H})$. Elemental analysis (\%): calcd. C 47.86, H 2.95, N 18.60; found: C 48.02, H 3.03, N 18.51

$\left[\mathrm{CoPtCo}_{2} \mathbf{P d}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (4):

The compound $\mathbf{4}$ was synthesized by using the same reaction conditions as above description, except that the $\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (2) $(100 \mathrm{mg}, 0.065 \mathrm{mmol})$ was used. ($42 \mathrm{mg}, 41 \%$ yield) IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1602 \mathrm{~m}, ~ 1576 \mathrm{~m}, 1545 \mathrm{~m}, 1474 \mathrm{~m}, 1451 \mathrm{~m}, 1421 \mathrm{~s}, 1351 \mathrm{~m}, 1331 \mathrm{~m}, 1156 \mathrm{~m}, 765 \mathrm{~m}, 732 \mathrm{~m}$. MS(MALDI) $m / z: 1558[\mathrm{M}-\mathrm{Cl}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm}) 79.57(\mathrm{~b}, 4 \mathrm{H}), 68.56(\mathrm{~s}, 4 \mathrm{H})$, $20.16(\mathrm{~s}, 4 \mathrm{H}), 15.13(\mathrm{~d}, 4 \mathrm{H}), 12.20(\mathrm{~d}, 4 \mathrm{H}), 9.95(\mathrm{~d}, 4 \mathrm{H}), 9.54(\mathrm{t}, 4 \mathrm{H}), 8.21(\mathrm{t}, 4 \mathrm{H}), 7.23(\mathrm{t}, 4 \mathrm{H}), 3.49$ (s, 8H). Elemental analysis (\%): calcd. C 45.20, H 2.78, N 17.57; found: C 45.35, H 2.89, N 17.48

$\left[\mathrm{NiPtCo}_{2} \mathbf{P d}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (5):

In a 150 mL Erlenmeyer flask, $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](2)(100 \mathrm{mg}, 0.063 \mathrm{mmol})$ and $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(63 \mathrm{mg}, 0.253 \mathrm{mmol}$) were mixed with 30 g naphthalene for 4 hours under Argon. After cooling to ca. $80^{\circ} \mathrm{C}$, n-hexane (100 mL) was added in the brown solution to precipitate the metal complex. After filtration, the crude material was washed with hexane to remove naphthalene residues. The brown solid was subsequently extracted with $100 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was then condensed to $\sim 30 \mathrm{~mL}$. The dark brown crystal was formed by layering the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with ether. Yield: $82 \mathrm{mg}, 82 \%$. The dark brown crystal was obtained by diffusion of ether into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex. IR $(\mathrm{KBr}$, cm^{-1}): $1602 \mathrm{~m}, ~, 1576 \mathrm{~m}, 1544 \mathrm{~m}, 1473 \mathrm{~m}, 1452 \mathrm{~m}, 1420 \mathrm{~s}, 1351 \mathrm{~m}, 1330 \mathrm{~m}, 1155 \mathrm{~m}, 767 \mathrm{~m}, 732 \mathrm{~m}$. MS(MALDI) m/z: $1558[\mathrm{M}-\mathrm{Cl}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm}) 67.41(\mathrm{~b}, 4 \mathrm{H}), 25.28(\mathrm{~b}$, $4 \mathrm{H}), 12.20(\mathrm{~b}, 4 \mathrm{H}), 11.17(\mathrm{~b}, 4 \mathrm{H}), 8.98(\mathrm{~b}, 4 \mathrm{H}), 7.90(\mathrm{~b}, 4 \mathrm{H}), 7.71(\mathrm{~b}, 4 \mathrm{H}), 7.36(\mathrm{~b}, 4 \mathrm{H}), 6.57(\mathrm{~b}, 4 \mathrm{H})$, 6.01 (b, 4H). Elemental analysis (\%): calcd. C 45.21, H 2.78 , N 17.57 ; found: C 45.42, H 2.89, N 17.46

$\left[\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]$:

Hdpa (342 mg , 2 mmol) was dissolved in 30 g naphthalene at $150^{\circ} \mathrm{C}$ by using 150 mL Erlenmeyer flask under air. The $\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(174 \mathrm{mg}, 0.5 \mathrm{mmol})$ and anhydrous $\mathrm{CoCl}_{2}(130 \mathrm{mg}, 1 \mathrm{mmol})$ were added into the solution. The temperature was raised to refluxed naphthalene $\left(220^{\circ} \mathrm{C}\right)$ for 30 minutes. After that, a solid of t-BuOK ($224 \mathrm{mg}, 2 \mathrm{mmol}$) was added into the flask by several small portions. This mixture was then kept at refluxed temperature for 3 hours under air. This dark orange solution
was cooled to room temperature and treated it with hot hexane $(200 \mathrm{~mL})$ to precipitate the metal complex. After filtration, the brown solid was extracted with $50 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was purified by silica gel column with eluent $10 \%\left(\right.$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The final product was obtained by layer of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with diethyl ether. The dark orange crystal was collected and washed with ether. (316 $\mathrm{mg}, 59 \%$ yield). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1603 \mathrm{~m}, 1593 \mathrm{~m}, 1549 \mathrm{~m}, 1469 \mathrm{~s}, 1460 \mathrm{~s}, 1423 \mathrm{~s}, 1363 \mathrm{~m}, 1347 \mathrm{~m}$, $1316 \mathrm{~m}, 1284 \mathrm{~m}, 1155 \mathrm{~m}, 767 \mathrm{~m} . \mathrm{MS}(\mathrm{MALDI}) \mathrm{m} / \mathrm{z}: 1064[\mathrm{M}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ (ppm) 35.25 (b, 4H), $24.25(4 \mathrm{H}), 14.69(4 \mathrm{H}), 7.83(4 \mathrm{H})$. Elemental analysis (\%): calcd. C 45.13, H 3.03, N 15.79 ; found: C 45.37 , H 3.10, N 15.68

Spectroscopic Characterization

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPdCo}_{3}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (1) in CDCl_{3}

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPtCo}_{3}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](\mathbf{2})$ in CDCl_{3}

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (3) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right]$ (4) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S5: 2D COSY NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (full range).

Figure S6: 2D COSY NMR spectrum of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (small range). The H 5 and H 7 are indistinguishable from the spectrum. The assignment of H 8 and H 11 is based on the coupling constant. ${ }^{7}\left(J_{8,9}=8.2 \mathrm{~Hz} ; J_{10,11}=5.8 \mathrm{~Hz}\right)$ The relatively small red dots (lower intensity) at $\mathrm{H} 8 / \mathrm{H} 10$ and $\mathrm{H} 9 / \mathrm{H} 11$ are from long range coupling.

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Because of the fast relaxation of protons, the 2D COSY NMR measurement was unsuccessful and one of the eleven peaks is too broad to be detected.

Figure S8: High resolution MALDI spectrum (black line) and their simulation (red line) of $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](4)$ (right) and $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\text { tpda })_{4} \mathrm{Cl}_{2}\right](5)(\mathrm{left})$. The chloride coordinated on Pd site is weak interaction, which is rather like ion-pair. Therefore, the fragment of loss one $\mathrm{Cl}([\mathrm{M}-$ $\mathrm{Cl}]^{+}$) is detectable only.

Crystallographic Section:

Structural description, metal identification and refining method:

The complex $1\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ locates at general position with metal cores disorder. The space group is $\mathrm{P}_{1} / \mathrm{c}$ and the number of molecules in the asymmetric unit is one $\left(Z^{\prime}=1\right)$. The Co and Pd at the amide position are disorder due to the composition of unsymmetrical metal cores. The M2 and M4 represent the different combination of Pd and Co occupancy. The FVAR command in SHELXL program is applied to determine the metal occupancy of Pd and Co in M 2 and M 4 position. Likewise, the M2 and M4 in isostructural complex $2\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ are different combination of Pt and Co. The same method is applied to obtain the metal occupancy.

In compounds $\mathbf{3}, \mathbf{4}$ and 5, the cumulative intensity distribution in reflection statistics show that the space group of crystals belongs to centrosymmetric groups. (Figure S13) Therefore, the space group $\mathrm{I} 4 / \mathrm{m}$ is chosen for solving crystal structures. ${ }^{8,9}$ In addition, these compounds are isostructure in crystallography. The complex $\mathbf{3}\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ locates at special position and the number of molecules in the asymmetric unit is one eighth $\left(Z^{\prime}=0.125\right)$. The whole molecule can be generated by symmetrical operations of a 4-fold rotation axes along the metal cores and a mirror plane that is passing through the center cobalt (Co3) and perpendicular to the molecular plane. Owing to these two operations, the occupancy of all metals and axial chloride are fixed at 0.125 in the input file for refining structure. After the symmetric operation of the mirror plane, the metal cores can be generated into two possibilities of arrangement in compound 3. One is CoPdCoCoPd and the other is CoCoCoPdPd (as shown below). The later one is eliminated due to having too short Pd-Pd distance (2.16 Å). Similarly, there are two sets of metal-chloride distances. One is Co1-Cl1: $2.24 \AA / \mathrm{Pd} 1-\mathrm{Cl} 2: 2.95 \AA$ and the other is Co1-Cl2: $2.59 \AA$ / $\mathrm{Pd} 1-\mathrm{Cl} 1: 2.59 \AA$. The later one is omitted due to having too long Co-Cl distance. Because of the isostructure in crystallography, the same metal identification and refining methods are able to be applied to deal with the structures of compounds $\mathbf{4}$ and 5 .

The space group of $\left[\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]$ is $\mathrm{P}_{1} / \mathrm{c}$ and the number of molecules in the asymmetric unit is one $\left(Z^{\prime}=1\right)$. This complex locates at general position and there is no disorder in structure.

Figure S9: The crystal structures of $\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{1})(\mathrm{left})$ and $\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (2)(right). All atoms are drawn at the 50% probability level. The solvent molecules and hydrogen atoms are omitted for clarity and the crystals with major occupancy are chosen for display. Crystal occupancy contributions: $\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{1}): \mathrm{M} 2=0.885 \mathrm{Pd} / 0.115 \mathrm{Co}$ and $\mathrm{M} 4=0.885 \mathrm{Co} / 0.115 \mathrm{Pd}$; $\left[\mathrm{CoPtCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right](\mathbf{2}): \mathrm{M} 2=0.915 \mathrm{Pt} / 0.085 \mathrm{Co}$ and $\mathrm{M} 4=0.915 \mathrm{Co} / 0.015 \mathrm{Pt}$.

Figure S10: The crystal structures of $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (3) (left) and $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (4) (right). The solvent molecules and hydrogen atoms are omitted for clarity. All atoms are drawn at the 50\% probability level.

Figure S11: The crystal structure of $\left[\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]$. The solvent molecules and hydrogen atoms are omitted for clarity. All atoms are drawn at the 50% probability level.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure S12: The selected distances of related compounds illustrated in simplified structures.
(a) $\left[\mathrm{CoPdCo}_{3}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$
(1),
(b) $\left[\mathrm{CoPtCo}_{3}\left(\mathrm{tdpa}_{4} \mathrm{Cl}_{2}\right]\right.$
(2), (c) $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$
(3), (d)
$\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right.$]
(4), (e) $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$
(5), (f) $\quad\left[\mathrm{Co}_{5}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$
10 , (g)
$\left[\mathrm{CoPdCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]^{11}$, (h) $\left[\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2}\right]$. The distances of $\mathbf{1}$ in (a) and $\mathbf{2}$ in (b) are selected from the major occupancy of structures ($\sim 90 \%$). Because of the minor disorder of metal center, the distances in (1) and (2) are approximately close to the real value, but not the precise value.

Cumulative Intensity Distribution

Figure S13: The cumulative intensity distribution of reflection statistics
(a): $\left[\mathrm{CoPdCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (3), (b): $\left[\mathrm{CoPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (4), (c): $\left[\mathrm{NiPtCo}_{2} \mathrm{Pd}(\mathrm{tdpa})_{4} \mathrm{Cl}_{2}\right]$ (5)

The red, blue and black lines represent the theoretical value for twinned, non-centrosymmetric and centrosymmetric crystals, respectively. The orange dots are the experimental data.

Table S1. Crystal data and structure refinement details for $\mathbf{1} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Empirical formula	C63 H50 C18 Co4 N20 Pd
Formula weight	1712.95
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=20.0796(2) \AA \quad \alpha=90^{\circ}$.
	$b=15.9485(2) \AA \quad \beta=108.4299(7)^{\circ}$.
	$\mathrm{c}=21.4276(3) \AA \quad \gamma=90^{\circ}$.
Volume	6510.02(14) \AA^{3}
Z	4
Density (calculated)	$1.748 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.657 \mathrm{~mm}^{-1}$
F(000)	3432
Crystal size	$0.220 \times 0.200 \times 0.200 \mathrm{~mm}^{3}$
Theta range for data collection	1.623 to 27.499°.
Index ranges	$-26 \leq \mathrm{h} \leq 26,-20 \leq \mathrm{k} \leq 20,-27 \leq 1 \leq 27$
Reflections collected	36214
Independent reflections	$14909[\mathrm{R}(\mathrm{int})=0.0482]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.733 and 0.712
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14909 / 7 / 873
Goodness-of-fit on F^{2}	1.036
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.0999$
R indices (all data)	$\mathrm{R} 1=0.0872, \mathrm{wR} 2=0.1122$
Extinction coefficient	n / a
Largest diff. peak and hole	2.139 and -1.419 e. \AA^{-3}

Table S2. Crystal data and structure refinement details for $\mathbf{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Empirical formula	C63 H50 Cl8 Co4 N20 Pt
Formula weight	1801.64
Temperature	150(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=20.0753(3) \AA \quad \alpha=90^{\circ}$.
	$b=15.9501(2) \AA \quad \beta=108.4468(5)^{\circ}$.
	$\mathrm{c}=21.4567(3) \AA \quad \gamma=90^{\circ}$.
Volume	6517.48(16) \AA^{3}
Z	4
Density (calculated)	$1.836 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.524 \mathrm{~mm}^{-1}$
F(000)	3560
Crystal size	$0.230 \times 0.230 \times 0.220 \mathrm{~mm}^{3}$
Theta range for data collection	1.069 to 27.499°.
Index ranges	$-26 \leq \mathrm{h} \leq 26,-16 \leq \mathrm{k} \leq 20,-26 \leq 1 \leq 27$
Reflections collected	38788
Independent reflections	$14929[\mathrm{R}(\mathrm{int})=0.0464]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.761 and 0.748
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14929 / 7 / 873
Goodness-of-fit on F^{2}	1.057
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0410, \mathrm{wR} 2=0.0983$
R indices (all data)	$\mathrm{R} 1=0.0711, \mathrm{wR} 2=0.1067$
Extinction coefficient	n/a
Largest diff. peak and hole	2.046 and -1.600 e. \AA^{-3}

Table S3. Crystal data and structure refinement details for $\mathbf{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Empirical formula	C61 H46 Cl4 Co3 N20 Pd2
Formula weight	1590.57
Temperature	150(2) K
Wavelength	0.71073 £
Crystal system	Tetragonal
Space group	I4/m
Unit cell dimensions	$\mathrm{a}=10.5246(4) \AA \quad \alpha=90^{\circ}$.
	$b=10.5246(4) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.1616(11) \AA \quad \gamma=90^{\circ}$.
Volume	3008.6(3) \AA^{3}
Z	2
Density (calculated)	$1.756 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.634 \mathrm{~mm}^{-1}$
F(000)	1586
Crystal size	$0.167 \times 0.155 \times 0.127 \mathrm{~mm}^{3}$
Theta range for data collection	2.075 to 27.482°.
Index ranges	$-13 \leq \mathrm{h} \leq 13,-13 \leq \mathrm{k} \leq 13,-31 \leq 1 \leq 35$
Reflections collected	6289
Independent reflections	$1762[\mathrm{R}(\mathrm{int})=0.0431]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.789 and 0.646
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1762 / 45 / 200
Goodness-of-fit on F^{2}	1.087
Final R indices $[1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0450, \mathrm{wR} 2=0.1203$
R indices (all data)	$\mathrm{R} 1=0.0753, \mathrm{wR} 2=0.1384$
Extinction coefficient	0.0025(4)
Largest diff. peak and hole	1.566 and -1.135 e. \AA^{-3}

Table S4. Crystal data and structure refinement details for $\mathbf{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Empirical formula	C60.50 H45 Cl3 Co3 N20 Pd Pt
Formula weight	1636.79
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	I4/m
Unit cell dimensions	$a=10.5398(6) \AA \quad \alpha=90^{\circ}$.
	$b=10.5398(6) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.1120(14) \AA \quad \gamma=90^{\circ}$.
Volume	3011.8(4) \AA^{3}
Z	2
Density (calculated)	$1.805 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.608 \mathrm{~mm}^{-1}$
$F(000)$	1608
Crystal size	$0.167 \times 0.155 \times 0.127 \mathrm{~mm}^{3}$
Theta range for data collection	2.969 to 27.479°.
Index ranges	$-13 \leq \mathrm{h} \leq 13,-13 \leq \mathrm{k} \leq 13,-34 \leq 1 \leq 22$
Reflections collected	6035
Independent reflections	$1757[\mathrm{R}(\mathrm{int})=0.0345]$
Completeness to theta $=25.242^{\circ}$	99.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.636 and 0.563
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1757 / 38 / 196
Goodness-of-fit on F^{2}	1.078
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0369, \mathrm{wR} 2=0.1102$
R indices (all data)	$\mathrm{R} 1=0.0534, \mathrm{wR} 2=0.1199$
Extinction coefficient	n / a
Largest diff. peak and hole	1.303 and $-0.767 \mathrm{e} . \AA^{-3}$

Table S5. Crystal data and structure refinement details for $\mathbf{5} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C60.50 H45 Cl3 Co2 N20 Ni Pd Pt
1636.57

293(2) K
$0.71073 \AA$
Tetragonal
I4/m
$a=10.5523(4) \AA \quad \alpha=90^{\circ}$.
$b=10.5523(4) \AA \quad \beta=90^{\circ}$.
$c=27.0046(9) \AA \quad \gamma=90^{\circ}$.
3007.0(2) \AA^{3}

2
$1.808 \mathrm{Mg} / \mathrm{m}^{3}$
$3.651 \mathrm{~mm}^{-1}$
1610
$0.120 \times 0.120 \times 0.110 \mathrm{~mm}^{3}$
2.730 to 27.496°.
$-13 \leq h \leq 13,-10 \leq k \leq 13,-33 \leq 1 \leq 34$
9131
$1774[\mathrm{R}(\mathrm{int})=0.0232]$
99.8 \%

Semi-empirical from equivalents
0.7456 and 0.6387

Full-matrix least-squares on F^{2}
1774 / 39 / 200
1.084
$\mathrm{R} 1=0.0287, \mathrm{wR} 2=0.0886$
$\mathrm{R} 1=0.0365, \mathrm{wR} 2=0.0961$
n/a
1.707 and $-0.694 \mathrm{e} . \AA^{-3}$

Table S6. Crystal data and structure refinement details for $\mathrm{CoPtCo}(\mathrm{dpa})_{4} \mathrm{Cl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$

Empirical formula	C44 H40 Cl2 Co2 N12 O Pt
Formula weight	1136.73
Temperature	150(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$a=16.0911(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=15.7779(2) \AA \quad \beta=97.7811(8)^{\circ}$.
	$\mathrm{c}=17.0753(2) \AA \quad \gamma=90^{\circ}$.
Volume	4295.22(9) \AA^{3}
Z	4
Density (calculated)	$1.758 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.188 \mathrm{~mm}^{-1}$
F(000)	2248
Crystal size	$0.440 \times 0.250 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	1.765 to 27.498°.
Index ranges	$-20 \leq \mathrm{h} \leq 20,-20 \leq \mathrm{k} \leq 20,-17 \leq 1 \leq 22$
Reflections collected	22297
Independent reflections	$9783[\mathrm{R}(\mathrm{int})=0.0485]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.637 and 0.382
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9783 / 0 / 561
Goodness-of-fit on F^{2}	0.977
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0388, \mathrm{wR} 2=0.0813$
R indices (all data)	$\mathrm{R} 1=0.0631, \mathrm{wR} 2=0.0885$
Extinction coefficient	n / a
Largest diff. peak and hole	2.045 and -2.402 e. \AA^{-3}

References:

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
2. R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown, J. R. D. Copley and R. M. Dimeo, J. Res. Natl. Inst. Stand. Technol., 2009, 114, 341-358.
3. M.-h. Yang, T.-W. Lin, C.-C. Chou, H.-C. Lee, H.-C. Chang, G.-H. Lee, M.-k. Leung and S.-M. Peng, J. Chem. Soc., Chem. Commun., 1997, DOI: 10.1039/A706439J, 2279-2280.
4. K. S. Huang, M. J. Haddadin and M. J. Kurth, J. Org. Chem., 2002, 67, 2382-2385.
5. T. E. Müller, J. C. Green, D. M. P. Mingos, C. M. McPartlin, C. Whittingham, D. J. Williams and T. M. Woodroffe, J. Organomet. Chem., 1998, 551, 313-330.
6. M. Rimoldi, F. Ragaini, E. Gallo, F. Ferretti, P. Macchi and N. Casati, J. Chem. Soc., Dalton Trans., 2012, 41, 3648-3658.
7. M. C. Cheng, C. L. Mai, C. Y. Yeh, G. H. Lee and S. M. Peng, J. Chem. Soc., Chem. Commun., 2013, 49, 7938-7940.
8. M. Ladd and R. Palmer, in Structure Determination by X-ray Crystallography: Analysis by Xrays and Neutrons, eds. M. Ladd and R. Palmer, Springer US, Boston, MA, 2013, DOI: 10.1007/978-1-4614-3954-7_4, pp. 161-186.
9. T. Parkkinen, A. Koivula, J. Vehmaanpera and J. Rouvinen, Acta Crystallographica Section F, 2007, 63, 754-757.
10. C.-Y. Yeh, C.-H. Chou, K.-C. Pan, C.-C. Wang, G.-H. Lee, Y. O. Su and S.-M. Peng, J. Chem. Soc., Dalton Trans., 2002, DOI: 10.1039/B111462J, 2670-2677.
11. M. M. Rohmer, I. P. C. Liu, J. C. Lin, M. J. Chiu, C. H. Lee, G. H. Lee, M. Benard, X. Lopez and S. M. Peng, Angew. Chem. Int. Ed., 2007, 46, 3533-3536.
