Supplementary Information

Rb₃BaTeB₇O₁₅: A Novel [B₇O₁₆] Fundamental Building Block in a New Telluroborate with [TeO₃] Polyhedra

Jun Sun,^{1,2} Miriding Mutailipu,^{1,2*} Shichao Cheng,¹ Zhihua Yang,^{1,2} and Shilie Pan^{1,2*}

 ¹CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. E-mail: miriding@ms.xjb.ac.cn; slpan@ms.xjb.ac.cn.

Table S1. The final Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for Rb₃BaTeB₇O₁₅, U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the Bond Valence Sum (BVS) for each atom in the asymmetric unit.

				U(a a)	DVC
Atom	X	У	Z	U(eq)	BVS
Rb(1)	3376(1)	7088(1)	7392(1)	25(1)	1.06
Rb(2)	9154(1)	3232(1)	6340(1)	21(1)	1.08
Rb(3)	8619(1)	7538(1)	4969(1)	20(1)	1.05
Ba(1)	6060(1)	7840(1)	6275(1)	11(1)	2.20
Te(1)	6396(1)	2607(1)	5183(1)	13(1)	4.21
B(1)	7445(6)	6260(9)	7697(2)	10(1)	3.07
B(2)	9102(6)	8103(9)	7170(2)	10(1)	3.02
B(3)	10498(6)	8206(9)	6380(2)	9(1)	3.04
B(4)	12654(6)	10620(9)	6317(2)	11(1)	3.03
B(5)	14915(7)	12036(9)	6924(2)	12(1)	3.01
B(6)	6588(6)	5728(9)	3727(2)	9(1)	3.12
B(7)	12164(7)	7501(9)	5746(2)	10(1)	3.05
O(1)	8079(4)	3004(6)	4825(1)	15(1)	2.25
O(2)	9295(4)	7645(5)	6621(1)	12(1)	2.07
O(3)	11403(4)	9791(5)	6584(1)	13(1)	2.07
O(4)	12707(4)	9599(5)	5816(1)	11(1)	1.88
O(5)	6746(4)	4931(6)	5592(2)	22(1)	2.12
O(6)	7149(4)	505(6)	5616(2)	21(1)	2.12
O(7)	8498(4)	6424(5)	8116(1)	11(1)	2.07
O(8)	7650(4)	7073(6)	7225(1)	14(1)	2.04
O(9)	10749(4)	7136(5)	5946(1)	11(1)	2.05
O(10)	14013(4)	10371(5)	6675(1)	12(1)	2.09
O(11)	6095(4)	5398(5)	7757(1)	13(1)	2.11
O(12)	13341(4)	6114(6)	6008(2)	20(1)	2.09
O(13)	10286(4)	7281(5)	7529(1)	11(1)	1.93
O(14)	5357(4)	5970(5)	3375(1)	14(1)	2.01
O(15)	7691(4)	7147(5)	3796(2)	15(1)	2.07

Ba(1)-O(6)#1	2.686(4)	O(7)#3-Ba(1)-O(4)#2	88.94(9)
Ba(1)-O(5)	2.693(4)	O(14)#4-Ba(1)-O(4)#2	88.42(9)
Ba(1)-O(12)#2	2.719(4)	O(2)-Ba(1)-O(4)#2	162.02(9)
Ba(1)-O(8)	2.728(4)	O(6)-Te(1)-O(5)	102.91(18)
Ba(1)-O(10)#2	2.766(3)	O(6)-Te(1)-O(1)	97.65(17)
Ba(1)-O(7)#3	2.784(4)	O(5)-Te(1)-O(1)	94.48(16)
Ba(1)-O(14)#4	2.955(3)	O(11)-Rb(1)-O(13)#2	145.42(10)
Ba(1)-O(2)	2.969(4)	O(11)-Rb(1)-O(10)#2	104.99(10)
Ba(1)-O(4)#2	3.327(4)	O(13)#2-Rb(1)-O(10)#2	108.88(10)
Te(1)-O(6)	1.828(4)	O(11)-Rb(1)-O(3)#6	63.28(10)
Te(1)-O(5)	1.830(4)	O(13)#2-Rb(1)-O(3)#6	82.59(9)
Te(1)-O(1)	1.903(3)	O(10)#2-Rb(1)-O(3)#6	156.35(10)
Rb(1)-O(11)	2.756(3)	O(11)-Rb(1)-O(3)#2	150.17(10)
Rb(1)-O(13)#2	2.881(3)	O(13)#2-Rb(1)-O(3)#2	64.36(9)
Rb(1)-O(10)#2	2.908(4)	O(10)#2-Rb(1)-O(3)#2	46.67(9)
Rb(1)-O(3)#6	3.008(4)	O(3)#6-Rb(1)-O(3)#2	146.29(4)
Rb(1)-O(3)#2	3.101(4)	O(11)-Rb(1)-O(14)#4	65.16(10)
Rb(1)-O(14)#4	3.109(4)	O(13)#2-Rb(1)-O(14)#4	123.49(10)
Rb(1)-O(13)#6	3.310(3)	O(10)#2-Rb(1)-O(14)#4	86.06(10)
Rb(1)-O(13)#3	3.541(4)	O(3)#6-Rb(1)-O(14)#4	105.14(9)
Rb(2)-O(2)	2.918(3)	O(3)#2-Rb(1)-O(14)#4	98.90(9)
Rb(2)-O(5)	2.940(4)	O(11)-Rb(1)-O(13)#6	46.00(9)
Rb(2)-O(15)#7	2.947(4)	O(13)#2-Rb(1)-O(13)#6	112.94(10)
Rb(2)-O(11)#6	2.986(4)	O(10)#2-Rb(1)-O(13)#6	127.67(9)
Rb(2)-O(6)	3.001(4)	O(3)#6-Rb(1)-O(13)#6	60.46(9)
Rb(2)-O(3)#5	3.021(4)	O(3)#2-Rb(1)-O(13)#6	137.63(9)
Rb(2)-O(9)	3.126(3)	O(14)#4-Rb(1)-O(13)#6	44.69(9)
Rb(2)-O(7)#6	3.161(3)	O(11)-Rb(1)-O(13)#3	93.57(9)
Rb(3)-O(4)#8	2.884(4)	O(13)#2-Rb(1)-O(13)#3	106.65(10)
Rb(3)-O(6)#1	2.959(4)	O(10)#2-Rb(1)-O(13)#3	42.43(9)
Rb(3)-O(1)	2.962(4)	O(3)#6-Rb(1)-O(13)#3	115.16(9)
Rb(3)-O(9)	2.989(4)	O(3)#2-Rb(1)-O(13)#3	71.30(9)
Rb(3)-O(5)	2.994(4)	O(14)#4-Rb(1)-O(13)#3	118.46(9)
Rb(3)-O(1)#7	3.005(4)	O(13)#6-Rb(1)-O(13)#3	138.60(11)
Rb(3)-O(15)	3.048(4)	O(2)-Rb(2)-O(5)	79.03(10)
Rb(3)-O(1)#1	3.551(4)	O(2)-Rb(2)-O(15)#7	95.54(10)
B(1)-O(7)	1.355(7)	O(5)-Rb(2)-O(15)#7	127.50(10)
B(1)-O(8)	1.358(6)	O(2)-Rb(2)-O(11)#6	113.65(10)
B(1)-O(11)	1.374(6)	O(5)-Rb(2)-O(11)#6	127.88(10)
B(2)-O(13)	1.430(7)	O(15)#7-Rb(2)-O(11)#6	102.37(10)
B(2)-O(2)	1.477(7)	O(2)-Rb(2)-O(6)	136.31(10)
B(2)-O(11)#3	1.496(6)	O(5)-Rb(2)-O(6)	57.55(10)
B(2)-O(8)	1.500(7)	O(15)#7-Rb(2)-O(6)	113.75(10)

Table S2. Selected bond distances (Å) and angles (deg) for $Rb_3BaTeB_7O_{15}$.

B(3)-O(9)	1.355(7)	O(11)#6-Rb(2)-O(6)	91.77(10)
B(3)-O(3)	1.371(6)	O(2)-Rb(2)-O(3)#5	130.43(10)
B(3)-O(2)	1.374(6)	O(5)-Rb(2)-O(3)#5	146.77(10)
B(4)-O(4)	1.454(7)	O(15)#7-Rb(2)-O(3)#5	47.15(9)
B(4)-O(10)	1.455(7)	O(11)#6-Rb(2)-O(3)#5	60.62(9)
B(4)-O(15)#8	1.486(6)	O(6)-Rb(2)-O(3)#5	92.70(10)
B(4)-O(3)	1.502(6)	O(2)-Rb(2)-O(9)	45.36(9)
B(5)-O(10)	1.447(7)	O(5)-Rb(2)-O(9)	80.10(10)
B(5)-O(13)#10	1.455(7)	O(15)#7-Rb(2)-O(9)	61.82(9)
B(5)-O(14)#8	1.497(7)	O(11)#6-Rb(2)-O(9)	145.57(10)
B(5)-O(7)#10	1.513(6)	O(6)-Rb(2)-O(9)	122.33(10)
B(6)-O(15)	1.349(6)	O(3)#5-Rb(2)-O(9)	108.79(9)
B(6)-O(14)	1.358(7)	O(2)-Rb(2)-O(7)#6	104.89(9)
B(6)-O(12)#7	1.363(7)	O(5)-Rb(2)-O(7)#6	83.10(10)
B(7)-O(4)	1.436(6)	O(15)#7-Rb(2)-O(7)#6	146.41(9)
B(7)-O(9)	1.466(7)	O(11)#6-Rb(2)-O(7)#6	45.01(9)
B(7)-O(12)	1.486(7)	O(6)-Rb(2)-O(7)#6	67.94(10)
B(7)-O(1)#7	1.498(7)	O(3)#5-Rb(2)-O(7)#6	100.09(9)
O(6)#1-Ba(1)-O(5)	83.76(12)	O(9)-Rb(2)-O(7)#6	148.15(9)
O(6)#1-Ba(1)-O(12)#2	119.67(12)	O(4)#8-Rb(3)-O(6)#1	78.95(10)
O(5)-Ba(1)-O(12)#2	80.29(12)	O(4)#8-Rb(3)-O(1)	119.19(10)
O(6)#1-Ba(1)-O(8)	119.12(12)	O(6)#1-Rb(3)-O(1)	128.41(10)
O(5)-Ba(1)-O(8)	108.83(12)	O(4)#8-Rb(3)-O(9)	144.72(9)
O(12)#2-Ba(1)-O(8)	121.13(11)	O(6)#1-Rb(3)-O(9)	82.60(10)
O(6)#1-Ba(1)-O(10)#2	100.53(11)	O(1)-Rb(3)-O(9)	95.81(10)
O(5)-Ba(1)-O(10)#2	150.79(11)	O(4)#8-Rb(3)-O(5)	121.05(11)
O(12)#2-Ba(1)-O(10)#2	72.46(11)	O(6)#1-Rb(3)-O(5)	74.18(10)
O(8)-Ba(1)-O(10)#2	94.39(10)	O(1)-Rb(3)-O(5)	54.80(10)
O(6)#1-Ba(1)-O(7)#3	78.09(11)	O(9)-Rb(3)-O(5)	81.52(10)
O(5)-Ba(1)-O(7)#3	155.76(11)	O(4)#8-Rb(3)-O(1)#7	121.20(10)
O(12)#2-Ba(1)-O(7)#3	122.75(11)	O(6)#1-Rb(3)-O(1)#7	119.23(10)
O(8)-Ba(1)-O(7)#3	67.62(10)	O(1)-Rb(3)-O(1)#7	93.17(9)
O(10)#2-Ba(1)-O(7)#3	50.34(10)	O(9)-Rb(3)-O(1)#7	46.70(9)
O(6)#1-Ba(1)-O(14)#4	158.25(11)	O(5)-Rb(3)-O(1)#7	117.74(11)
O(5)-Ba(1)-O(14)#4	76.95(11)	O(4)#8-Rb(3)-O(15)	46.80(9)
O(12)#2-Ba(1)-O(14)#4	47.38(10)	O(6)#1-Rb(3)-O(15)	121.63(10)
O(8)-Ba(1)-O(14)#4	77.26(10)	O(1)-Rb(3)-O(15)	76.93(10)
O(10)#2-Ba(1)-O(14)#4	91.73(10)	O(9)-Rb(3)-O(15)	153.99(9)
O(7)#3-Ba(1)-O(14)#4	123.18(10)	O(5)-Rb(3)-O(15)	112.42(10)
O(6)#1-Ba(1)-O(2)	77.62(11)	O(1)#7-Rb(3)-O(15)	108.13(10)
O(5)-Ba(1)-O(2)	82.20(11)	O(4)#8-Rb(3)-O(1)#1	42.11(9)
O(12)#2-Ba(1)-O(2)	153.55(10)	O(6)#1-Rb(3)-O(1)#1	50.11(9)
O(8)-Ba(1)-O(2)	47.89(10)	O(1)-Rb(3)-O(1)#1	159.37(14)
O(10)#2-Ba(1)-O(2)	127.00(10)	O(9)-Rb(3)-O(1)#1	103.87(9)

O(7)#3-Ba(1)-O(2)	78.35(9)	O(5)-Rb(3)-O(1)#1	121.73(9)
O(14)#4-Ba(1)-O(2)	109.15(9)	O(1)#7-Rb(3)-O(1)#1	104.76(8)
O(6)#1-Ba(1)-O(4)#2	87.41(10)	O(15)-Rb(3)-O(1)#1	87.68(9)
O(5)-Ba(1)-O(4)#2	106.27(11)	O(7)-B(1)-O(8)	121.4(5)
O(12)#2-Ba(1)-O(4)#2	44.20(10)	O(7)-B(1)-O(11)	119.6(5)
O(8)-Ba(1)-O(4)#2	137.62(9)	O(8)-B(1)-O(11)	118.8(5)
O(10)#2-Ba(1)-O(4)#2	45.81(9)	O(13)-B(2)-O(2)	112.1(4)
O(4)-B(4)-O(3)	111.2(4)	O(13)-B(2)-O(11)#3	111.8(4)
O(10)-B(4)-O(3)	107.7(4)	O(2)-B(2)-O(11)#3	110.4(4)
O(15)#8-B(4)-O(3)	106.1(4)	O(13)-B(2)-O(8)	112.1(4)
O(10)-B(5)-O(13)#9	112.1(4)	O(2)-B(2)-O(8)	102.5(4)
O(10)-B(5)-O(14)#8	110.7(5)	O(11)#3-B(2)-O(8)	107.4(4)
O(13)#10-B(5)-O(14)#8	112.0(4)	O(9)-B(3)-O(3)	122.5(5)
O(10)-B(5)-O(7)#10	105.8(4)	O(9)-B(3)-O(2)	117.9(5)
O(13)#10-B(5)-O(7)#9	109.4(4)	O(3)-B(3)-O(2)	119.6(5)
O(14)#8-B(5)-O(7)#9	106.5(4)	O(4)-B(4)-O(10)	113.1(4)
O(15)-B(6)-O(14)	123.2(5)	O(4)-B(4)-O(15)#8	106.8(4)
O(15)-B(6)-O(12)#7	122.0(5)	O(10)-B(4)-O(15)#8	111.8(4)
O(14)-B(6)-O(12)#7	114.7(5)	O(9)-B(7)-O(12)	111.1(4)
O(4)-B(7)-O(9)	114.1(4)	O(4)-B(7)-O(1)#7	109.4(4)
O(4)-B(7)-O(12)	106.6(4)	O(9)-B(7)-O(1)#7	106.5(4)
O(12)-B(7)-O(1)#7	109.0(4)		

Symmetry transformations used to generate equivalent atoms:

#1 x, y+1, z #2 x-1, y, z #3 -x+3/2, y+1/2, -z+3/2 #4 -x+1, -y+1, -z+1 #5 x, y-1, z #6 -x+3/2, y-1/2, -z+3/2 #7 -x+2, -y+1, -z+1 #8 -x+2, -y+2, -z+1 #9 -x+5/2, y+1/2, -z+3/2

Figure S1. Coordination environment for three types of the Rb atoms.

Figure S2. (a) The arrangement of the [BaO₉] groups; (b) Coordination environment of the Ba atom.

Figure S3. (a) (c) (e) The arrangement of the [RbO₈] groups; (b) (d) (f) Coordination environment of the Rb atoms.

Figure S4. The arrangement of the [TeO₃] groups and coordination environment of the Te atom.

Figure S5. Energy-dispersive X-ray spectroscopy of $Rb_3BaTeB_7O_{15}$.