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Figure S1. 1H NMR spectra of 1 (600 MHz, C6D6, 30 °C). 
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Figure S2. 13C{1H} NMR spectra of 1 (150 MHz, C6D6, 30 °C). 
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Figure S3. 1H NMR spectra of 2 (600 MHz, C6D6, 30 °C). 
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Figure S4. 13C{1H} NMR spectra of 2 (150 MHz, C6D6, 30 °C).
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Figure S5.  13C{1H} (150 MHz, C6D6, 30 °C) of 5 upon standing at room temperature for 3 h (600 MHz, 

C6D6, 30 °C).  

 

 

 

 

 

Figure S6. Neat polymerization at 120 °C.;  = using Ɛ-CL: 1 molar ratio of 200: 1,  = using Ɛ-CL: 2 

molar ratio of 200: 1 (Table 2, entries 4-5). 
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Figure S7. Solution polymerization using ε-CL: 1 molar ratio of 100: 1 at 100 °C in toluene (Table 2, 

entry 8); a) plots of conversion vs. time, b) linear plots of ln([ε-CL]t/[ε-CL]0) vs. time. 
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Figure S8. Solution polymerization using L-LA: 1 molar ratio of 100: 1 at 100 °C in toluene (Table 2, 

entry 11); a) plots of conversion vs. time, b) linear plots of ln([LA]t/[LA]0) vs. time. 
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Figure S9. Homonuclear decoupled 1H NMR spectra of PLAs obtained from L-LA (600 MHz, CDCl3, 30 

°C). NMR signals were assigned according to literature.1,2  

 

 

Figure S10. Homonuclear decoupled 1H NMR spectra of PLAs obtained from rac-LA (600 MHz, CDCl3, 

30 °C). NMR signals were assigned according to literature.3 The probability of racemic enchainment 

(Pr) was calculated as shown below. 

 

 The determination of probability of racemic enchainment (Pr) 

  Generally, the atactic PLA shows five tetrads in its homonuclear decoupled 1H NMR 

spectra including [sis], [sii], [iis], [iii], and [isi]. According to tetrad probabilities based on Bernoullian 

statistics4, The Pr value can be calculated using following equation; 

[sis]  = Pr
2/2 (1) 

2[sis] = Pr
2 (2) 

Pr = √2[𝑠𝑖𝑠] (3) 

Pm = 1-Pr (4) 

Where Pm equals the probability of meso enchainment. 

             [sis] value equals the integrated intensity ratio of sis tetrads divided by that of total 

methine proton region. For heterotactic PLAs, the Pr value is close to 1, on the other hand the Pr value 

of isotactic PLAs is close to 0. For atactic PLAs, the Pr value is 0.5. 
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Figure S11.  13C{1H} spectra (150 MHz, CDCl3, 30 °C) of PLA obtained from the polymerization of rac-

LA at 10 min (43 % conv.), 20 min (80% conv.), and 60 min (95% conv.). 

 

 

 

Figure S12. Solution copolymerization of L-LA and Ɛ-CL using L-LA: Ɛ-CL: 1 molar ratio of 100: 100: 1 at 

100 °C (Table 2, entry 13);  = PLA,  = PCL. 
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Determination of average sequence length 

For a quantitative analysis according to Bernoulli statistics, 13C{1H} NMR spectroscopy was 

used to analyst the copolymer chains by the integrated intensity ratio of resonance signals. Here in, 

the transesterification reaction was observed in polymerization using 1 and Sn(Oct)2 as a catalyst. This 

phenomenon leads to generate CLC signal which are the second mode of transesterification implying 

the chains were cut during copolymerization. The experimental-average lengths of lactidyl blocks lLL 

and lC can be calculated by the following equation.5–8 

lLL = 
1

2
 (LLL + LLC + CLL + CLC)/(CLC + 

1

2
 (LLC + CLL)) (1) 

LLL = 
1

2
 [CLLLL] + 

1

2
 [LLLLC] + 

1

3
 [CLLLC] + [LLLLLL] (2) 

LLC = 
1

2
 [CLLC] + 

1

2
 [LLLLC] + 

1

3
 [CLLLC] (3) 

CLL = 
1

2
 [CLLC] + 

1

2
 [CLLLL] + 

1

3
 [CLLLC] (4) 

CLC = [CLC] (5) 

lC = (LCL + CCL + LCC + CCC)/(LCL + 
1

2
 (CCL + LCC)) (6) 

LCL = [LLCLL] + [LLCLC] + [CLCLL] + [CLCLC] (7) 

CCL = [CCLC] + [CCLL] (8) 

LCC = [CLCC] + [LLCC] (9) 

CCC = [CCC] (10) 
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