Electronic Supplementary Information for

Synthesis and characterizations of guanidinate tin(II) complexes for ringopening polymerizations of cyclic esters

Thasanaporn Ungpittagul, ${ }^{\text {a,b }}$ Phonpimon Wongmahasirikun, $^{\text {a }}$ and Khamphee Phomphrai*a,c
a Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand. *E-mail: khamphee.p@vistec.ac.th
${ }^{\text {b }}$ Center for Catalysis, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400 Thailand
c Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210 Thailand
-
ت

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $1\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of $\mathbf{1}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $2\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}\right)$ of 5 upon standing at room temperature for $3 \mathrm{~h}(600 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$).

Figure S6. Neat polymerization at $120^{\circ} \mathrm{C}$.; $\boldsymbol{\Delta}=$ using ε-CL: 1 molar ratio of 200: 1, $=$ using ε-CL: 2 molar ratio of 200: 1 (Table 2, entries 4-5).

Figure S7. Solution polymerization using ε-CL: 1 molar ratio of $100: 1$ at $100{ }^{\circ} \mathrm{C}$ in toluene (Table 2, entry 8); a) plots of conversion vs. time, b) linear plots of $\ln \left([\varepsilon-C L]_{t} /[\varepsilon-C L]_{0}\right)$ vs. time.

Figure S8. Solution polymerization using L-LA: 1 molar ratio of $100: 1$ at $100^{\circ} \mathrm{C}$ in toluene (Table 2, entry 11); a) plots of conversion vs. time, b) linear plots of $\ln \left([L A]_{t} /[L A]_{0}\right)$ vs. time.

Figure S9. Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra of PLAs obtained from L-LA ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30$ ${ }^{\circ} \mathrm{C}$). NMR signals were assigned according to literature. ${ }^{1,2}$

Figure S10. Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra of PLAs obtained from rac-LA ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $30^{\circ} \mathrm{C}$). NMR signals were assigned according to literature. ${ }^{3}$ The probability of racemic enchainment $\left(\mathrm{P}_{\mathrm{r}}\right)$ was calculated as shown below.

The determination of probability of racemic enchainment (P_{r})

Generally, the atactic PLA shows five tetrads in its homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra including [sis], [sii], [iis], [iii], and [isi]. According to tetrad probabilities based on Bernoullian statistics ${ }^{4}$, The Pr_{r} value can be calculated using following equation;

$$
\begin{array}{ll}
{[s i s]} & =\mathrm{P}_{\mathrm{r}}{ }^{2} / 2 \\
2[s i s] & =\mathrm{P}_{\mathrm{r}}{ }^{2} \\
\mathrm{P}_{\mathrm{r}} & =\sqrt{2[s i s]} \\
\mathrm{P}_{\mathrm{m}} & =1-\mathrm{P}_{\mathrm{r}} \tag{4}
\end{array}
$$

Where P_{m} equals the probability of meso enchainment.
[sis] value equals the integrated intensity ratio of sis tetrads divided by that of total methine proton region. For heterotactic PLAs, the P_{r} value is close to 1 , on the other hand the P_{r} value of isotactic PLAs is close to 0 . For atactic PLAs, the P_{r} value is 0.5 .

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra ($150 \mathrm{MHz}, \mathrm{CDCl} 3,30^{\circ} \mathrm{C}$) of PLA obtained from the polymerization of racLA at 10 min (43% conv.), 20 min (80% conv.), and 60 min (95% conv.).

Figure S12. Solution copolymerization of L-LA and ε-CL using L-LA: ε-CL: 1 molar ratio of 100: 100: 1 at $100^{\circ} \mathrm{C}$ (Table 2, entry 13); $\Delta=$ PLA, $=$ PCL.

Determination of average sequence length

For a quantitative analysis according to Bernoulli statistics, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy was used to analyst the copolymer chains by the integrated intensity ratio of resonance signals. Here in, the transesterification reaction was observed in polymerization using 1 and $\mathbf{S n (O c t})_{2}$ as a catalyst. This phenomenon leads to generate CLC signal which are the second mode of transesterification implying the chains were cut during copolymerization. The experimental-average lengths of lactidyl blocks I_{LL} and I_{C} can be calculated by the following equation. ${ }^{5-8}$

$$
\begin{align*}
& \mathrm{I}_{\mathrm{LL}}=\frac{1}{2}(\mathrm{LLL}+\mathrm{LLC}+\mathrm{CLL}+\mathrm{CLC}) /\left(\mathrm{CLC}+\frac{1}{2}(\mathrm{LLC}+\mathrm{CLL})\right) \tag{1}\\
& \mathrm{LLL}=\frac{1}{2}[\mathrm{CLLLL}]+\frac{1}{2}[\mathrm{LLLLC}]+\frac{1}{3}[\mathrm{CLLLC}]+[\mathrm{LLLLLL}] \tag{2}\\
& \mathrm{LLC}=\frac{1}{2}[\mathrm{CLLC}]+\frac{1}{2}[\mathrm{LLLLC}]+\frac{1}{3}[\mathrm{CLLLC}] \tag{3}\\
& \mathrm{CLL}=\frac{1}{2}[\mathrm{CLLC}]+\frac{1}{2}[\mathrm{CLLLL}]+\frac{1}{3}[\mathrm{CLLLC}] \tag{4}\\
& \mathrm{CLC}=[\mathrm{CLC}] \tag{5}\\
& \mathrm{I}_{\mathrm{C}}=(\mathrm{LCL}+\mathrm{CCL}+\mathrm{LCC}+\mathrm{CCC}) /\left(\mathrm{LCL}+\frac{1}{2}(\mathrm{CCL}+\mathrm{LCC})\right) \tag{6}\\
& \mathrm{LCL}=[\mathrm{LLCLL}]+[\mathrm{LLCLC}]+[\mathrm{CLCLL}]+[C L C L C] \tag{7}\\
& \mathrm{CCL}=[\mathrm{CCLC}]+[C C L L] \tag{8}\\
& \mathrm{LCC}=[\mathrm{CLCC}]+[\mathrm{LLCC}] \tag{9}\\
& \mathrm{CCC}=[\mathrm{CCC}] \tag{10}
\end{align*}
$$

References

1 E. J. Shin, A. E. Jones and R. M. Waymouth, Macromolecules, 2012, 45, 595-598.
2 K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J. Kolstad, T. A. Lindgren, M. A. Doscotch, J. I. Siepmann and E. J. Munson, Macromolecules, 1997, 30, 2422-2428.
3 N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H. Dale and M. R. J. Elsegood, Dalton Trans., 2007, 4464-4471.
4 B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2001, 123, 3229-3238.
5 J. Kasperczyk and M. Bero, Die Makromol. Chemie, 1991, 192, 1777-1787.
6 M. Bero, J. Kasperczyk and G. Adamus, Die Makromol. Chemie, 1993, 194, 907-912.
7 M. Bero and J. Kasperczyk, Macromol. Chem. Phys., 1996, 197, 3251-3258.
8 J. Kasperczyk and M. Bero, Die Makromol. Chemie, 1993, 194, 913-925.

