Reversible Nickel-Metallacycle Formation with a Phosphiniminebased Pincer Ligand

Xiujing Xing, Shaoguang Zhang, Laura M. Thierer, Michael R. Gau, Patrick J. Carroll, Neil Tomson*
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, United States

Contents

1. NMR Spectra .. 2
2. Kinetic Study of Isocyanide Insertion.. 25
3. Crystallographic data .. 32

1. NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\mathbf{1}$ in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S7. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in THF- d_{8}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{Pyr}-d_{5} . *=\mathrm{THF}$ and $\mathrm{Et}_{2} \mathrm{O}$.

Figure S9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\mathbf{3}$ in $\mathrm{Pyr}-d_{5}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8}. Note: Base is NaHMDS.

Figure S11. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\mathbf{3}$ in THF- d_{8}.

Figure S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8}.

Figure S13a. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8}.

Figure S13b. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8} from 156 to 135 ppm , see Figure S13a for the full spectrum.

Figure S13c. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8} from 135 to 126 ppm , see Figure S13a for the full spectrum.

Figure S13d. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8} from 125 to 110 ppm , see Figure S13a for the full spectrum.

Figure S13e. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in THF- d_{8} from -3 to -35 ppm , see Figure S 13 a for the full spectrum.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in THF- d_{8}.

Figure $\mathbf{S 1 5} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16a. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$.

Figure S16b. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ from 152 to 140 ppm , see Figure S 16 a for the full spectrum.

Figure S16c. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ from 140 to 124 ppm , see Figure S 16 a for the full spectrum. Note: $133.09-133.60 \mathrm{ppm}$ and $127.76-128.26 \mathrm{ppm}$ are solvent residues.

Figure S16d. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ from 124 to 106 ppm , see Figure S 16 a for the full spectrum.

Figure S17. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$.

Figure S18. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR DOSY spectra of $\mathbf{3}$ in pyridine- d_{5} with different gradients (from 2% to 95%).

Figure S20. ${ }^{1} \mathrm{H}$ NMR DOSY spectra of $\mathbf{4}$ in pyridine- d_{5} with different gradients (from 2% to 95%).

Table S21. Diffusion constants obtained from DOSY experiments.

Compound	Diff Constant $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
trimethoxybenzene	$1.635 \mathrm{e}-009$
$\mathbf{3}$	$7.195 \mathrm{e}-010$
$\mathbf{4}$	$6.968 \mathrm{e}-010$

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}-\boldsymbol{d}_{\mathbf{5}}$ in pyridine \boldsymbol{d}_{5}.

Figure S23. ${ }^{2} \mathrm{H}$ NMR spectrum of $\mathbf{4 - \boldsymbol { d } _ { 5 }}$ in $\mathrm{THF} / \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4- \boldsymbol{d}_{5} in pyridine- d_{5}.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in pyridine- d_{5}.

Figure S26. VT (300K to 240 K) ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in pyridine- d_{5}.

Figure S27. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}$ in pyridine- d_{5}.

Figure S28a. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}$ in pyridine- $d 5$.

Figure S28b. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}$ in pyridine- d_{5} from 160 to 105 ppm , see Figure S28a for the full spectrum.

Figure S29. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\mathbf{5}$ in pyridine- d_{5}.

Figure S30. ${ }^{1} \mathrm{H}_{-}{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\mathbf{5}$ in pyridine- d_{5}.

Figure S31. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 2D NMR spectrum of 5 in pyridine- d_{5}.

Figure S32. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ TOSCY 2D NMR spectrum of $\mathbf{5}$ in in pyridine- $d 5$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of $5-\boldsymbol{d}_{5}$ in pyridine- d_{5}. ${ }^{*}=\mathrm{Et}_{2} \mathrm{O}$.

Figure S34. ${ }^{2} \mathrm{H}$ NMR spectrum of $\mathbf{5 - d _ { 5 }}$ in Pyridine/ $\mathrm{CD}_{3} \mathrm{CN}$. Note: CD and ND peaks from $\mathrm{CD}^{\mathrm{xyl}} \mathrm{NDCNi}$ were not observed in the ${ }^{2} \mathrm{H}$ spectrum. The signal observed in the spectrum corresponds to the CD_{3} group.

Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}-\boldsymbol{d}_{\mathbf{5}}$ in pyridine- d_{5}.

Figure S36a. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S36b. ${ }^{1}$ H NMR spectrum ($0-9 \mathrm{ppm}$ window) of 6 in $\mathrm{C}_{6} \mathrm{D}_{6}$. Ni-H peak at -24.36 ppm is shown in Figure S36a.

Figure S37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

2. Kinetic Study of Isocyanide Insertion

2.1: Decay of 4 and 4-d5

All kinetic experiments were performed in J. Young NMR tubes in THF- d_{8} and recorded on a Bruker UNI 400 NMR spectrometer at 300 K . Trimethoxybenzene was added as an internal standard. Samples were prepared by addition of 8 mg of 4 or $4-\boldsymbol{d}_{5}$ in 0.5 ml of THF- d_{8} to a J. Young tube. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy was used to monitor the course of the reaction. The isocyanide (2.5 equiv, 5 mg) was added to the J. Young tube $(t=0 \mathrm{~min})$. Spectra were taken periodically and the absolute integrations were converted to concentrations.

Figure S55. Plot of concentration (mol/L) of 4 (blue) and 4- \boldsymbol{d}_{5} (orange) vs. time (min).

Data fitting for decay of $\mathbf{4}$

Figure S56. Plot of concentration $(\mathrm{mol} / \mathrm{L})$ of 4 vs . time (min) with 2.5 equiv of xylNC.

Figure S57. Plot of reciprocal of concentration of $\mathbf{4}$ vs. time (min) with 2.5 equiv of xylNC.

Figure S58. Plot of natural logarithm of concentration of $\mathbf{4}$ vs. time (min) with 2.5 equiv of xylNC.

Data fitting for decay of 4- \boldsymbol{d}_{5}

Figure S59. Plot of concentration ($\mathrm{mol} / \mathrm{L}$) of $\mathbf{4}-\boldsymbol{d}_{\mathbf{5}}$ vs. time (min) with 2.5 equiv of xylNC.

Figure S60. Plot of reciprocal of concentration of $\mathbf{4}-\boldsymbol{d}_{\mathbf{5}}$ vs. time (min) with 2.5 equiv of xylNC.

Figure S61. Plot of natural logarithm of concentration of $\mathbf{4}-\boldsymbol{d}_{\mathbf{5}}$ vs. time (min) with 2.5 equiv of xylNC.

2.2: Formation of $\mathbf{5}$ and $\mathbf{5 - \boldsymbol { d } _ { \boldsymbol { 5 } }}$

For KIE studies on the formation of final product (5), the initial rate was recorded by plotting the concentration of formed product with time within the first 10% formation.

Table S62. Reaction rate of $\mathbf{4}$ and $\mathbf{4 - d _ { 5 }}$ converting to final product $\mathbf{5}$ and $\mathbf{5}-\boldsymbol{d}_{\mathbf{5}}$. See below for data fitting.

Figure S63. Plot of concentration of product $\mathbf{5}(\mathrm{mol} / \mathrm{L})$ vs. time (min) in the isocyanide insertion reaction with 4.

Figure S64. Plot of concentration of product($\mathrm{mol} / \mathrm{L}$) over time (min) in the isocyanide insertion reaction with 4-d5.

Figure S65. Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isocyanide insertion reaction with metallocycle $\mathbf{4}$ over time from $t=0 \mathrm{~min}$ to $t=77 \mathrm{~min}$ at 300 K .

Figure S66. Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isocyanide insertion reaction with metallocycle 4- \boldsymbol{d}_{5} over time from $t=0 \mathrm{~min}$ to $t=3514 \mathrm{~min}$ at 300 K .

Figure S67. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isocyanide insertion reaction with 10 equiv of xylNC at $\mathrm{t}=175$ min at 300 K . The identity of these species was not identified.

3. Crystallographic data

Table S68. Summary of Crystallographic data for compounds $\mathbf{2}$ and $\mathbf{3}$

	2	3
formula	$\mathrm{C}_{51.4} \mathrm{H}_{54.5} \mathrm{Cl}_{0.1} \mathrm{~N}_{3} \mathrm{NiO}_{2.9} \mathrm{P}_{2}{ }^{*}$	$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{NaNiOP}_{2}$
fw	884.87	746.41
Temperature/K	100	100
Crystal system	triclinic	triclinic
space group	P-1	P-1
$a(\AA)$	11.5572(6)	10.7438(3)
$b(\AA)$	11.7407(6)	12.7981(4)
$c(\AA)$	16.9501(8)	14.4155(5)
α (deg)	100.184(2)	69.6770(10)
β (deg)	93.978(2)	83.8800(10)
$\gamma(\mathrm{deg})$	102.322(2)	74.4970 (10)
$\mathrm{V}\left(\AA^{3}\right)$	2197.81(19)	1790.91(10)
Z	2	2
$\mathrm{d}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.337	1.384
$\mu\left(\mathrm{mm}^{-1}\right)$	0.567	0.682
F(000)	934.0	780.0
Crystal size, mm	$0.25 \times 0.23 \times 0.15$	$0.15 \times 0.13 \times 0.04$
2θ range for data collection(deg)	6.428-55.142	5.328-55.102
	$-15 \leq h \leq 15$,	$-13 \leq h \leq 13$,
Index ranges	$-15 \leq \mathrm{k} \leq 15$,	$-16 \leq \mathrm{k} \leq 16$,
	$-22 \leq 1 \leq 21$	$-18 \leq 1 \leq 16$
Reflections collected	58237	48983
Independent reflections	$10118[\mathrm{R}(\mathrm{int})=0.0395]$	8248[R(int) $=0.0857]$
Data/restraints/parameters	10118/0/561	8248/0/451
Goodness-of-fit on F^{2}	1.073	1.024
Final R indexes	$\mathrm{R}_{1}=0.0406$,	$\mathrm{R}_{1}=0.0421$,
$[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{wR}_{2}=0.0835$	$\mathrm{wR}_{2}=0.0743$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0528 \\ \mathrm{wR}_{2}=0.0892 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0649 \\ \mathrm{wR}_{2}=0.0815 \end{gathered}$
Largest diff. peak/hole(e \AA^{-3})	0.47/-0.41	0.46/-0.50
CCDC \#	1970109	1970112

*Note: Compound 2 has $10 \% \mathrm{Cl}$ disorder with the phenoxide in the crystal structure.

Table S69. Summary of Crystallographic data for compounds 4 and 5

	4	5
formula	$\mathrm{C}_{45} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NiP}_{2}$	$\mathrm{C}_{49} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{NiP}_{2}$
fw	744.46	824.55
Temperature/K	100	100
Crystal system	triclinic	monoclinic
space group	P-1	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
$a(\AA)$	10.0629(4)	8.8277(6)
$b(\AA)$	12.4737(5)	26.5464(18)
$c(\AA)$	15.2136(6)	17.2437(11)
α (deg)	$74.272(2)$	90
β (deg)	87.324(2)	94.715(3)
$\gamma(\mathrm{deg})$	79.697(2)	90
$\mathrm{V}\left(\AA^{3}\right)$	1808.50(13)	4027.3(5)
Z	2	4
$\mathrm{d}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.367	1.360
$\mu\left(\mathrm{mm}^{-1}\right)$	0.663	0.604
$F(000)$	780.0	1728.0
Crystal size, mm	$0.24 \times 0.07 \times 0.07$	$0.19 \times 0.09 \times 0.04$
2θ range for data collection(deg)	5.806-55.1	5.65-55.124
	$-13 \leq \mathrm{h} \leq 13$,	$-11 \leq \mathrm{h} \leq 11$,
Index ranges	$-16 \leq k \leq 16,$	$-34 \leq k \leq 34,$
	$-18 \leq 1 \leq 19$	$-22 \leq 1 \leq 22$
Reflections collected	76559	114083
Independent reflections	$8318[\mathrm{R}(\mathrm{int})=0.0692]$	9287[R(int) $=0.1084$]
Data/restraints/parameters	8318/0/462	9287/0/518
Goodness-of-fit on F^{2}	1.062	1.246
Final R indexes	$\mathrm{R}_{1}=0.0393$,	$\mathrm{R}_{1}=0.07456$,
$[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{wR}_{2}=0.0819$	$\mathrm{wR}_{2}=0.1625$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0537, \\ \mathrm{wR}_{2}=0.0880 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0926, \\ \mathrm{wR}_{2}=0.1691 \end{gathered}$
Largest diff. peak/hole(e \AA^{-3})	1.11/-0.43	0.87/-0.59
CCDC \#	1970110	1970111

