Supporting Information

for

# Reversible Nickel-Metallacycle Formation with a Phosphiniminebased Pincer Ligand

Xiujing Xing, Shaoguang Zhang, Laura M. Thierer, Michael R. Gau, Patrick J. Carroll, Neil Tomson\*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, United States

#### Contents

| 1. | NMR Spectra                           | 2   |
|----|---------------------------------------|-----|
| 2  | Kinetic Study of Isocyanide Insertion | 25  |
| 2. |                                       | .23 |
| 3. | Crystallographic data                 | .32 |

## 1. NMR Spectra

190 170







-190

-150 -170



Figure S3. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 1 in CDCl<sub>3</sub>.



Figure S4. <sup>1</sup>H–<sup>13</sup>C HSQC 2D NMR spectrum of 1 in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H NMR spectrum of 2 in C<sub>6</sub>D<sub>6</sub>.



Figure S6.  ${}^{31}P{}^{1}H$  NMR spectrum of 2 in C<sub>6</sub>D<sub>6</sub>.



Figure S7.  ${}^{13}C{}^{1}H$  NMR spectrum of 2 in THF- $d_8$ .



**Figure S8.** <sup>1</sup>H NMR spectrum of **3** in Pyr- $d_5$ . \* = THF and Et<sub>2</sub>O.



**Figure S9.**  $^{1}H^{-1}H$  COSY 2D NMR spectrum of **3** in Pyr- $d_{5}$ .



**Figure S10.** <sup>1</sup>H NMR spectrum of **3** in THF- $d_8$ . Note: Base is NaHMDS.



**Figure S11.**  $^{1}H-^{1}H$  COSY 2D NMR spectrum of **3** in THF- $d_{8}$ .



Figure S12. <sup>31</sup>P $\{^{1}H\}$  NMR spectrum of 3 in THF- $d_8$ .



Figure S13a. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 3 in THF- $d_8$ .



Figure S13b. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in THF- $d_8$  from 156 to 135 ppm, see Figure S13a for the full spectrum.



**Figure S13c.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in THF- $d_8$  from 135 to 126 ppm, see Figure S13a for the full spectrum.



Figure S13d. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in THF- $d_8$  from 125 to 110 ppm, see Figure S13a for the full spectrum.



**Figure S13e.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in THF- $d_8$  from -3 to -35 ppm, see Figure S13a for the full spectrum.



Figure S14. <sup>1</sup>H NMR spectrum of 4 in THF- $d_8$ .



Figure S15.  ${}^{31}P{}^{1}H$  NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub>.



Figure S16a.  ${}^{13}C{}^{1}H$  NMR spectrum of 4 in C<sub>6</sub>D<sub>5</sub>Br.



Figure S16b. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4 in C<sub>6</sub>D<sub>5</sub>Br from 152 to 140 ppm, see Figure S16a for the full spectrum.



**Figure S16c.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **4** in C<sub>6</sub>D<sub>5</sub>Br from 140 to 124 ppm, see Figure S16a for the full spectrum. Note: 133.09 – 133.60 ppm and 127.76 – 128.26 ppm are solvent residues.



Figure S16d. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4 in C<sub>6</sub>D<sub>5</sub>Br from 124 to 106 ppm, see Figure S16a for the full spectrum.



Figure S17. <sup>1</sup>H–<sup>13</sup>C HSQC 2D NMR spectrum of 4 in C<sub>6</sub>D<sub>5</sub>Br.



Figure S18. <sup>1</sup>H-<sup>31</sup>P HMBC 2D NMR spectrum of 4 in C<sub>6</sub>D<sub>5</sub>Br.



Figure S19. <sup>1</sup>H NMR DOSY spectra of 3 in pyridine- $d_5$  with different gradients (from 2% to 95%).



Figure S20. <sup>1</sup>H NMR DOSY spectra of 4 in pyridine- $d_5$  with different gradients (from 2% to 95%).

Table S21. Diffusion constants obtained from DOSY experiments.

| Compound          | Diff Constant $(m^2/s)$ |  |
|-------------------|-------------------------|--|
| trimethoxybenzene | 1.635e-009              |  |
| 3                 | 7.195e-010              |  |
| 4                 | 6.968e-010              |  |



**Figure S22.** <sup>1</sup>H NMR spectrum of  $4-d_5$  in pyridine- $d_5$ .



Figure S23.<sup>2</sup>H NMR spectrum of 4-*d*<sub>5</sub> in THF/C<sub>6</sub>D<sub>6</sub>.



**Figure S24.** <sup>31</sup>P $\{^{1}H\}$  NMR spectrum of 4-*d*<sub>5</sub> in pyridine-*d*<sub>5</sub>.



Figure S25. <sup>1</sup>H NMR spectrum of 5 in pyridine- $d_5$ .



Figure S26. VT (300K to 240K) <sup>1</sup>H NMR spectrum of 5 in pyridine- $d_5$ .



**Figure S27.** <sup>31</sup>P $\{^{1}H\}$  NMR spectrum of **5** in pyridine- $d_{5}$ .



Figure S28a. <sup>13</sup>C $\{^{1}H\}$  NMR spectrum of 5 in pyridine- $d_{5}$ .



**Figure S28b.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **5** in pyridine-*d*<sub>5</sub> from 160 to 105 ppm, see Figure S28a for the full spectrum.



**Figure S29.**  $^{1}H^{-13}C$  HSQC 2D NMR spectrum of **5** in pyridine- $d_{5}$ .



Figure S30. <sup>1</sup>H-<sup>31</sup>P HMBC 2D NMR spectrum of 5 in pyridine-*d*<sub>5</sub>.



**Figure S32.**  $^{1}H^{-1}H$  TOSCY 2D NMR spectrum of **5** in in pyridine- $d_{5}$ .



**Figure S33.** <sup>1</sup>H NMR spectrum of **5**- $d_5$  in pyridine- $d_5$ . \* = Et<sub>2</sub>O.



**Figure S34.** <sup>2</sup>H NMR spectrum of **5-***d*<sub>5</sub> in Pyridine/CD<sub>3</sub>CN. Note: CD and ND peaks from CD<sup>xyl</sup>NDCNi were not observed in the <sup>2</sup>H spectrum. The signal observed in the spectrum corresponds to the CD<sub>3</sub> group.



**Figure S35.** <sup>31</sup>P $\{^{1}H\}$  NMR spectrum of **5**-*d*<sub>5</sub> in pyridine-*d*<sub>5</sub>.



Figure S36a. <sup>1</sup>H NMR spectrum of 6 in  $C_6D_6$ .



**Figure S36b.** <sup>1</sup>H NMR spectrum (0-9 ppm window) of **6** in C<sub>6</sub>D<sub>6</sub>. Ni-H peak at -24.36 ppm is shown in Figure S36a.



Figure S37.  ${}^{31}P{}^{1}H$  NMR spectrum of 6 in C<sub>6</sub>D<sub>6</sub>.

#### 2. Kinetic Study of Isocyanide Insertion

#### 2.1: Decay of 4 and 4-ds

All kinetic experiments were performed in J. Young NMR tubes in THF- $d_8$  and recorded on a Bruker UNI 400 NMR spectrometer at 300 K. Trimethoxybenzene was added as an internal standard. Samples were prepared by addition of 8 mg of 4 or 4- $d_5$  in 0.5 ml of THF- $d_8$  to a J. Young tube. <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy was used to monitor the course of the reaction. The isocyanide (2.5 equiv, 5 mg) was added to the J. Young tube (t = 0 min). Spectra were taken periodically and the absolute integrations were converted to concentrations.



Figure S55. Plot of concentration (mol/L) of 4 (blue) and 4-d<sub>5</sub> (orange) vs. time (min).

Data fitting for decay of 4



Figure S56. Plot of concentration (mol/L) of 4 vs. time (min) with 2.5 equiv of xylNC.



Figure S57. Plot of reciprocal of concentration of 4 vs. time (min) with 2.5 equiv of xylNC.



Figure S58. Plot of natural logarithm of concentration of 4 vs. time (min) with 2.5 equiv of xylNC.



### Data fitting for decay of $4-d_5$

Figure S59. Plot of concentration (mol/L) of  $4-d_5$  vs. time (min) with 2.5 equiv of xylNC.



Figure S60. Plot of reciprocal of concentration of  $4-d_5$  vs. time (min) with 2.5 equiv of xylNC.



Figure S61. Plot of natural logarithm of concentration of  $4-d_5$  vs. time (min) with 2.5 equiv of xylNC.

#### 2.2: Formation of 5 and 5-d<sub>5</sub>

For KIE studies on the formation of final product (5), the initial rate was recorded by plotting the concentration of formed product with time within the first 10% formation.

Table S62. Reaction rate of 4 and 4-d<sub>5</sub> converting to final product 5 and 5-d<sub>5</sub>. See below for data fitting.

|                                                                 | 5                       | <b>5</b> - <i>d</i> <sub>5</sub> | KIE     |
|-----------------------------------------------------------------|-------------------------|----------------------------------|---------|
| Reaction rate for formation of product $(mole L^{-1} min^{-1})$ | 1.15 x 10 <sup>-5</sup> | 2.97 x 10 <sup>-6</sup>          | 3.9±0.5 |
| Uncertainty of slope                                            | 0.05 x 10 <sup>-5</sup> | 0.23 x 10 <sup>-6</sup>          |         |



Figure S63. Plot of concentration of product 5 (mol/L) vs. time (min) in the isocyanide insertion reaction with 4.



Figure S64. Plot of concentration of product(mol/L) over time (min) in the isocyanide insertion reaction with  $4-d_5$ .



Figure S65. Selected <sup>31</sup>P{<sup>1</sup>H} NMR spectra of the isocyanide insertion reaction with metallocycle 4 over time from t = 0 min to t = 77 min at 300K.



**Figure S66**. Selected <sup>31</sup>P{<sup>1</sup>H} NMR spectra of the isocyanide insertion reaction with metallocycle **4**-*d*<sub>5</sub> over time from t = 0 min to t = 3514 min at 300K.

## 2.3: Addition of 10 equiv of xylNC



**Figure S67**. <sup>31</sup>P{<sup>1</sup>H} NMR spectra of the isocyanide insertion reaction with 10 equiv of xylNC at t = 175 min at 300K. The identity of these species was not identified.

## 3. Crystallographic data

|                                          | 2                                                                                                        | 3                          |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| formula                                  | C <sub>51.4</sub> H <sub>54.5</sub> Cl <sub>0.1</sub> N <sub>3</sub> NiO <sub>2.9</sub> P <sub>2</sub> * | C42H40N3NaNiOP2            |
| fw                                       | 884.87                                                                                                   | 746.41                     |
| Temperature/K                            | 100                                                                                                      | 100                        |
| Crystal system                           | triclinic                                                                                                | triclinic                  |
| space group                              | P-1                                                                                                      | P-1                        |
| <i>a</i> (Å)                             | 11.5572(6)                                                                                               | 10.7438(3)                 |
| <i>b</i> (Å)                             | 11.7407(6)                                                                                               | 12.7981(4)                 |
| <i>c</i> (Å)                             | 16.9501(8)                                                                                               | 14.4155(5)                 |
| a (deg)                                  | 100.184(2)                                                                                               | 69.6770(10)                |
| β (deg)                                  | 93.978(2)                                                                                                | 83.8800(10)                |
| γ (deg)                                  | 102.322(2)                                                                                               | 74.4970(10)                |
| V (Å <sup>3</sup> )                      | 2197.81(19)                                                                                              | 1790.91(10)                |
| Ζ                                        | 2                                                                                                        | 2                          |
| d <sub>calc</sub> (g/cm <sup>3</sup> )   | 1.337                                                                                                    | 1.384                      |
| $\mu$ (mm <sup>-1</sup> )                | 0.567                                                                                                    | 0.682                      |
| F(000)                                   | 934.0                                                                                                    | 780.0                      |
| Crystal size, mm                         | $0.25\times0.23\times0.15$                                                                               | $0.15\times0.13\times0.04$ |
| $2\theta$ range for data collection(deg) | 6.428 - 55.142                                                                                           | 5.328 - 55.102             |
|                                          | $-15 \le h \le 15$ ,                                                                                     | $-13 \le h \le 13$ ,       |
| Index ranges                             | $-15 \le k \le 15$ ,                                                                                     | $-16 \le k \le 16$ ,       |
|                                          | $-22 \le 1 \le 21$                                                                                       | $-18 \le 1 \le 16$         |
| Reflections collected                    | 58237                                                                                                    | 48983                      |
| Independent reflections                  | 10118[R(int) = 0.0395]                                                                                   | 8248[R(int) = 0.0857]      |
| Data/restraints/parameters               | 10118/0/561                                                                                              | 8248/0/451                 |
| Goodness-of-fit on F <sup>2</sup>        | 1.073                                                                                                    | 1.024                      |
| Final R indexes                          | $R_1 = 0.0406,$                                                                                          | $R_1 = 0.0421,$            |
| [I>=2σ(I)]                               | $wR_2 = 0.0835$                                                                                          | $wR_2 = 0.0743$            |
|                                          | $R_1 = 0.0528$ ,                                                                                         | $R_1 = 0.0649$ .           |
| Final R indexes [all data]               | $wR_2 = 0.0892$                                                                                          | $wR_2 = 0.0815$            |
| Largest diff. peak/hole(eÅ-3)            | 0.47/-0.41                                                                                               | 0.46/-0.50                 |
| CCDC #                                   | 1970109                                                                                                  | 1970112                    |
|                                          |                                                                                                          |                            |

Table S68. Summary of Crystallographic data for compounds 2 and 3

\*Note: Compound 2 has 10% Cl disorder with the phenoxide in the crystal structure.

|                                           | 4                              | 5                              |
|-------------------------------------------|--------------------------------|--------------------------------|
| formula                                   | $C_{45}H_{41}N_3NiP_2$         | $C_{49}H_{45}N_5NiP_2$         |
| fw                                        | 744.46                         | 824.55                         |
| Temperature/K                             | 100                            | 100                            |
| Crystal system                            | triclinic                      | monoclinic                     |
| space group                               | P-1                            | $P2_1/n$                       |
| <i>a</i> (Å)                              | 10.0629(4)                     | 8.8277(6)                      |
| <i>b</i> (Å)                              | 12.4737(5)                     | 26.5464(18)                    |
| <i>c</i> (Å)                              | 15.2136(6)                     | 17.2437(11)                    |
| a (deg)                                   | 74.272(2)                      | 90                             |
| β (deg)                                   | 87.324(2)                      | 94.715(3)                      |
| γ (deg)                                   | 79.697(2)                      | 90                             |
| V (Å <sup>3</sup> )                       | 1808.50(13)                    | 4027.3(5)                      |
| Ζ                                         | 2                              | 4                              |
| d <sub>calc</sub> (g/cm <sup>3</sup> )    | 1.367                          | 1.360                          |
| $\mu$ (mm <sup>-1</sup> )                 | 0.663                          | 0.604                          |
| F(000)                                    | 780.0                          | 1728.0                         |
| Crystal size, mm                          | $0.24 \times 0.07 \times 0.07$ | $0.19 \times 0.09 \times 0.04$ |
| 2θ range for data collection(deg)         | 5.806 - 55.1                   | 5.65 - 55.124                  |
|                                           | $-13 \le h \le 13$ ,           | $-11 \le h \le 11$ ,           |
| Index ranges                              | $-16 \le k \le 16$ ,           | $-34 \le k \le 34,$            |
|                                           | $-18 \le 1 \le 19$             | $-22 \le 1 \le 22$             |
| Reflections collected                     | 76559                          | 114083                         |
| Independent reflections                   | 8318[R(int) = 0.0692]          | 9287[R(int) = 0.1084]          |
| Data/restraints/parameters                | 8318/0/462                     | 9287/0/518                     |
| Goodness-of-fit on F <sup>2</sup>         | 1.062                          | 1.246                          |
| Final R indexes                           | $R_1 = 0.0393,$                | $R_1 = 0.07456,$               |
| [I>=2σ (I)]                               | $wR_2 = 0.0819$                | $wR_2 = 0.1625$                |
|                                           | $R_1 = 0.0537$                 | $R_1 = 0.0926$                 |
| Final R indexes [all data]                | $WR_{2} = 0.0880$              | $wR_2 = 0.1691$                |
| Largest diff mask (hala(a & -3))          | 1 11/ 0 42                     | 0.87/ 0.50                     |
| Largest dill. peak/noie(eA <sup>-</sup> ) | 1.11/-0.45                     | 0.8//-0.39                     |
| CCDC #                                    | 19/0110                        | 197/0111                       |

Table S69. Summary of Crystallographic data for compounds 4 and 5