Electronic Supporting Information for:

Isolation and structural characterisation of rhodium(III) η^2 –fluoroarene complexes: experimental verification of predicted regioselectivity

Matthew R. Gyton,[‡] Amy E. Kynman,[‡] Baptiste Leforestier, Angelo Gallo, Józef R. Lewandowski, and Adrian B. Chaplin

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL. Email: <u>a.b.chaplin@warwick.ac.uk;</u> [‡] These authors contributed equally.

Table of contents

1.	General experimental methods			
2.	Preparation of [Rh(CNC-Me)(biph)(κ ¹ –CICH ₂ CI)][B(3,5-(CF ₃) ₂ C ₆ H ₃) ₄] 2	2		
3.	Analysis of 2 by VT NMR spectroscopy	5		
4.	NMR scale reactions of 2 with fluoroarenes	8		
4.1	Arene = FC ₆ H ₅	8		
4.2	Arene = $1,2-F_2C_6H_4$	9		
4.3	Arene = $1,3-F_2C_6H_4$	10		
4.4	Arene = $1,4-F_2C_6H_4$	11		
5.	Preparation of [Rh(CNC-Me)(biph)(η^2 -arene)][B(3,5-(CF ₃) ₂ C ₆ H ₃) ₄] 1	13		
5.1	General procedure	13		
5.2	Arene = FC_6H_5 (1b)	13		
5.3	Arene = $1,2-F_2C_6H_4$ (1c)			
5.4	Arene = $1,3-F_2C_6H_4$ (1d)			
5.5	Arene = $1,4-F_2C_6H_4$ (1e)	17		
5.6	Competition experiment and preparation of 1a			
5.7	Analysis by SS ¹⁹ F MAS NMR spectroscopy			
6.	Computational details	21		
7.	References			

1. General experimental methods

All manipulations were performed under an atmosphere of argon (N4.8) using Schlenk and glovebox techniques unless otherwise stated. Glassware was oven dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C *in vacuo* overnight. CD₂Cl₂ was freeze-pump-thaw degassed and dried over 3 Å molecular sieves. C₆H₆ was distilled from sodium and benzophenone and stored over 3 Å molecular sieves Fluoroarenes were pre-dried over Al₂O₃, distilled from calcium hydride and dried over two successive batches of 3 Å molecular sieves. Other anhydrous solvents were purchased from Acros or Sigma-Aldrich, freeze-thaw degassed and stored over 3 Å molecular sieves. Na[B(3,5-(CF₃)₂C₆H₃)₄]¹ CNC-Me·2HBr² and [Rh(biph)Cl(*t*Bu₂PCH₂P*t*Bu₂)]³ were prepared following literature procedures. All other reagents are commercially available and were used as supplied. Solution and solid-state NMR spectra were recorded on Bruker spectrometers at 298 K unless otherwise stated. NMR spectra in fluoroarenes were recorded using an internal capillary of C₆D₆ and externally referenced to SiMe₄. Chemical shifts are quoted in ppm and coupling constants in Hz. Crystallographic data was collected on a dual source Rigaku Oxford diffraction SuperNova diffractometer. HR ESI-MS were recorded on a Bruker MaXis mass spectrometer and microanalyses performed at the London Metropolitan University by Stephen Boyer. IR spectra were recorded in air on a Bruker Alpha Platinum ATR FT-IR spectrometer at 298 K.

2. Preparation of [Rh(CNC-Me)(biph)(κ¹–CICH₂CI)][B(3,5-(CF₃)₂C₆H₃)₄] 2

A suspension of Ag₂O (23.5 mg, 101 µmol), CNC-Me·2HBr (40.7 mg, 101 µmol) and Na[B(3,5-(CF₃)₂C₆H₃)₄] (98.6 mg, 111 µmol) in CH₂Cl₂ (*ca.* 2 mL) was stirred in the dark for 18 h. The solution was filtered, washing the precipitate with additional CH₂Cl₂ (3 x 1 mL) before it was discarded, and volatiles removed *in vacuo*. Solid [Rh(biph)Cl(dtbpm)] (60.9 mg, 102 µmol) and CH₂Cl₂ (*ca.* 2 mL) were added and the resulting solution stirred at RT for 18 h. Volatiles were removed *in vacuo* and the organometallic intermediate extracted into Et₂O (3 x 3 mL) and the solvent removed *in vacuo*. Solid Na[B(3,5-(CF₃)₂C₆H₃)₄] (99.2 mg, 112 µmol) and CH₂Cl₂ (*ca.* 2 mL) were added and the resulting solution was filtered, washing the precipitate with additional CH₂Cl₂ (3 x 1 mL) before it was discarded, and the product obtained as yellow-orange blocks after successive recrystallisation from CH₂Cl₂/hexane at RT. Yield: 117 mg (80%).

¹**H NMR** (500 MHz, CD₂Cl₂): δ 8.33 (t, ³J_{HH} = 8.2, 1H, py), 7.68–7.81 (m, 8H, Ar^F), 7.65 (d, ³J_{HH} = 2.0, 2H, NCH), 7.59 (d, ³J_{HH} = 8.2, 2H, py), 7.56 (br, 4H, Ar^F), 7.54 (br, 2H, biph), 7.00 (vbr, fwhm = 20 Hz, 2H, biph), 6.92 (d, ³J_{HH} = 2.0, 2H, NCH), 6.76 (vbr, fwhm = 60 Hz, 2H, biph), 5.33 (s, 2H, free CH₂Cl₂), 3.21 (s, 6H, CH₃). One of the biph signals is not observed, presumably as a consequence of structural dynamics. ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 182.4 (d, ¹J_{RhC} = 44, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 151.1 (s, py), 144.9 (s, py), 135.4 (s, Ar^F), 129.3 (qq, ¹J_{FC} = 32, ¹J_{CB} = 3, Ar^F), 126.5 (biph), 125.6 (s, NCH), 125.1 (q, ¹J_{FC} =

272, Ar^F), 123.7 (s, biph),121.4 (s, biph), 118.1 (sept, ${}^{3}J_{FC} = 4$, Ar^F), 118.0 (s, NCH), 108.3 (s, py), 37.9 (s, CH₃). Three biph signals are not observed, presumably as a consequence of structural dynamics.

Anal. Calcd. for C₅₈H₃₅BCl₂F₂₄N₅Rh (1442.53 gmol⁻¹): C, 48.29; H, 2.45; N, 4.86. Found C, 48.40; H, 2.37; N, 4.81.

HR ESI-MS (positive ion, 4 kV): 494.0852 ([M – CH₂Cl₂]⁺, calcd 494.0847) m/z.

Figure S5. ATR IR spectrum of 2.

Figure S6. Solid-state structure of **2**. Thermal ellipsoids at 50% probability, minor disordered component (Rh–Cl<u>CH₂Cl</u>) and [B(3,5-(CF₃)₂C₆H₃)₄]⁻ anion omitted for clarity. Selected bond lengths (Å) and angles (°) associated with dichloromethane coordination: Rh–Cl, 2.5932(7); *trans*-C–Rh–Cl, 174.01(7); *trans*-C-Rh, 2.017(3).

3. Analysis of 2 by VT NMR spectroscopy.

Data were collected using a solution of **2** (14.4 mg, 10.0 μ mol) in CD₂Cl₂ (0.5 mL) within a J. Young's valve NMR tube and a 600 MHz Bruker spectrometer. The sample was equilibrated at each temperature for at least 5 min before data acquisition (Figure S7).

The dynamics observed by ¹H NMR spectroscopy were modelled using the four biphenyl resonances in the region 7.30 – 6.20 ppm (Table S1, Figure S8). Reference line widths and coupling constants were fixed following analysis of low temperature data (200 – 225 K). Eyring analysis (Figure S9) of the associated rate constants yielded $\Delta H^{\ddagger} = 75 \pm 1$ kJ mol⁻¹ and $\Delta S^{\ddagger} = +80 \pm 5$ J K⁻¹ mol⁻¹, with $\Delta G^{\ddagger}_{298K} = 52 \pm 3$ kJ mol⁻¹.

<i>T </i> K	log(<i>k</i>)	<i>k</i> / s ⁻¹	ln(<i>k/T</i>)	
240	0.3792	2.39	-4.607	
250	1.1533	14.23	-2.866	
260	1.7885	61.45	-1.443	
268	2.1846	152.97	-0.561	
273	2.5425	348.74	0.245	
298	3.7652	5823.71	2.973	
308	4.1172	13097.85	3.750	

 Table S1. Variable temperature ¹H NMR data for 2.

.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6

Figure S9. Eyring plot for the dynamics observed in 2.

4. NMR scale reactions of 2 with fluoroarenes

Complex **2** (14.4 mg, 10.0 μ mol) and fluoroarene solvent (0.5 mL) were mixed within a J. Young's valve NMR tube and the resulting solution analysed by ¹H and ¹⁹F{¹H} NMR spectroscopy.

4.1 Arene = FC₆H₅

Following the general procedure, an orange solution was obtained. Analysis by ¹H NMR spectroscopy indicated the liberation of one equivalent of CH₂Cl₂ (δ 4.73) into solution. The ¹⁹F{¹H} NMR spectrum showed only signals for the [B(3,5-(CF₃)₂C₆H₃)₄]⁻ anion (δ -62.5) and the solvent (δ -113.3).

4.2 Arene = 1,2-F₂C₆H₄

Following the general procedure, an orange solution was obtained. Analysis by ¹H NMR spectroscopy indicated the liberation of one equivalent of CH₂Cl₂ (δ 4.91) into solution. The ¹⁹F{¹H} NMR spectrum showed only signals for the [B(3,5-(CF₃)₂C₆H₃)₄]⁻ anion (δ -63.1) and the solvent (δ -139.6).

Figure S13. ¹⁹F{¹H} NMR spectrum recorded after **2** was dissolved in 1,2-F₂C₆H₄ (377 MHz).

4.3 Arene = $1,3-F_2C_6H_4$

350

300

250

200

150

100

50

Following the general procedure, an orange solution was obtained. Analysis by ¹H NMR spectroscopy indicated the liberation of one equivalent of CH₂Cl₂ (δ 5.01) into solution. The ¹⁹F{¹H} NMR spectrum showed only signals for the $[B(3,5-(CF_3)_2C_6H_3)_4]^-$ anion (δ -62.9) and the solvent (δ -110.7).

-50

-100

-150

-200

-250

-300

-350

4.4 Arene = 1,4-F₂C₆H₄

Following the general procedure, a suspension was obtained with an orange precipitate. Full dissolution was only obtained with warming. Analysis by ¹H NMR spectroscopy at 298 K after initial mixing indicated the liberation of CH₂Cl₂ (*ca.* 10 equivalents per complex, δ 5.06) into solution. The ¹⁹F{¹H} NMR spectrum showed only signals for the [B(3,5-(CF₃)₂C₆H₃)₄]⁻ anion (δ -62.8) and the solvent (δ -120.3). ¹H NMR spectra recorded at 351 K and immediately after cooling to 298 K before the onset of crystallisation are consistent with the liberation of one equivalent of CH₂Cl₂ into solution (δ _{351K} 5.00; δ _{298K} 5.05).

Figure S18. ¹H NMR spectrum recorded after 2 was heated until dissolution in 1,4-F₂C₆H₄ (351 K, 400 MHz).

Figure S19. ¹H NMR spectrum recorded after 2 was heated until dissolution in 1,4-F₂C₆H₄ (298 K, 400 MHz).

5. Preparation of [Rh(CNC-Me)(biph)(η^2 -arene)][B(3,5-(CF_3)_2C_6H_3)_4] 1

5.1 General procedure

A solution of **2** in the respective fluoroarene (*ca.* 2 mL) was briefly mixed before volatiles were removed *in vacuo*. The product was then recrystallised as orange bocks by layering a solution of the crude product in the respective fluoroarene with hexane and then storage at RT.

5.2 Arene = FC₆H₅ (1b)

Following the general procedure using **2** (40.0 mg, 27.7 µmol) and C₆H₅F afforded **1b**. Yield: 29.3 mg (73%).

No absorbances attributed to bound fluoroarene could be detected on analysis by ATR IR spectroscopy. Analysis of a sample dissolved in CD₂Cl₂ by ¹H and ¹⁹F NMR spectroscopy indicated the liberation of one equivalent of FC₆H₅ into solution (δ_{19F} -113.9).

Anal. Calcd. for C₆₃H₃₈BF₂₅N₅Rh (1453.71 gmol⁻¹): C, 52.05; H, 2.63; N, 4.82. Found C, 52.07; H, 2.65; N, 4.76.

Figure S20. ATR IR spectrum of 1b.

5.3 Arene = $1,2-F_2C_6H_4$ (1c)

Following the general procedure using **2** (40.0 mg, 27.7 μ mol) and 1,2-F₂C₆H₄ afforded **1c**. Yield: 25.0 mg (61%).

No absorbances attributed to bound fluoroarene could be detected on analysis by ATR IR spectroscopy. Analysis of a sample dissolved in CD₂Cl₂ by ¹H and ¹⁹F NMR spectroscopy indicated the liberation of one equivalent of 1,2-F₂C₆H₄ into solution (δ_{19F} -139.4).

Anal. Calcd. for C₆₃H₃₇BF₂₆N₅Rh (1471.70 gmol⁻¹): C, 51.42; H, 2.53; N, 4.76. Found C, 51.44; H, 2.43; N, 4.70.

5.4 Arene = 1,3-F₂C₆H₄ (1d)

Following the general procedure using **2** (40.0 mg, 27.7 μ mol) and 1,3-F₂C₆H₄ afforded **1d**. Yield: 31.2 mg (77%).

No absorbances attributed to bound fluoroarene could be detected on analysis by ATR IR spectroscopy. Analysis of a sample dissolved in CD₂Cl₂ by ¹H and ¹⁹F NMR spectroscopy indicated the liberation of one equivalent of 1,3-F₂C₆H₄ into solution (δ_{19F} -110.8).

Anal. Calcd. for C₆₃H₃₇BF₂₆N₅Rh (1471.70 gmol⁻¹): C, 51.42; H, 2.53; N, 4.76. Found C, 51.35; H, 2.38; N, 4.61.

5.5 Arene = $1,4-F_2C_6H_4$ (1e)

Following the general procedure using **2** (40.0 mg, 27.7 μ mol) and 1,4-F₂C₆H₄ afforded **1e**. Yield: 32.9 mg (81%).

No absorbances attributed to bound fluoroarene could be detected on analysis by ATR IR spectroscopy. Analysis of a sample dissolved in CD₂Cl₂ by ¹H and ¹⁹F NMR spectroscopy indicated the liberation of one equivalent of 1,4-F₂C₆H₄ into solution (δ_{19F} -120.3).

Anal. Calcd. for C₆₃H₃₇BF₂₆N₅Rh (1471.70 gmol⁻¹): C, 51.42; H, 2.53; N, 4.76. Found C, 51.25; H, 2.32; N, 4.54.

Figure S29. ATR IR spectrum of 1e.

5.6 Competition experiment and preparation of 1a

A solution of **2** (40.0 mg, 27.7 μ mol) in 1,2-F₂C₆H₄ (*ca*. 2 mL) was briefly mixed before volatiles were removed *in vacuo*. The residue was dissolved in a mixture of 1,2-F₂C₆H₄ (1.00 mL, 10.2 mmol) and C₆H₆ (910 μ L, 10.2 mmol) causing a colour change from orange to yellow. After 30 min the solution was layered with excess hexane (*ca*. 50 mL) and stored at RT to afford **1a** as yellow-orange crystals. Yield: 30.7 mg (77%).

No signals attributed to bound arene could be detected on analysis by ATR IR spectroscopy. Analysis of a sample dissolved in CD_2Cl_2 by ¹H and ¹⁹F NMR spectroscopy confirmed the absence of fluoroarene and liberation of one equivalent of C_6H_6 into solution.

Anal. Calcd. for C₆₃H₃₇BF₂₆N₅Rh (1471.70 gmol⁻¹): C, 51.42; H, 2.53; N, 4.76. Found C, 51.25; H, 2.32; N, 4.54.

5.7 Analysis by SS ¹⁹F MAS NMR spectroscopy

All solid-state NMR experiments were recorded on a Bruker 500 WB (wide bore) spectrometer equipped with AVANCE III console and using a 1.3 mm Bruker probe in HCN configuration at 50 kHz MAS frequency. The probe was tuned to ¹⁹F frequency at 470.38 MHz and sample were maintained at 288 K with active cooling using a Bruker BCU-X cooling unit (670 L/h flow). The hard 90° pulses were set to 2.5 µs at 100 kHz nutation frequency for ¹⁹F. The experiments were acquired with a single 2 s recycle delay and 256 scans were collected.

6. Computational details

Density functional theory calculations were carried out using the ORCA 4.1.2 program,⁴ employing Grimme's dispersion corrected ωB97X-D3 functional⁵ and the def2-TZVP(-f) basis set on all atoms, with the associated def2-ECP effective core potential on Rh and Re.⁶ The RIJCOSX approximation was used to reduce the computational cost of calculations (with the def2/J auxiliary basis set).⁷ Geometries of metal cations were optimised starting from the X-ray crystallography data and are provided in XYZ format. Characterisation of stationary points as minima was verified by analytical vibrational mode analysis. Coordination of the fluoroarene moieties was investigated using the extended transition state method for energy decomposition analysis combined with the natural orbitals for chemical valence theory (ETS-NOCV) as implemented in ORCA 4.1.2.⁸

Compd_binding site	E	ΔE_{bind}	NOCV 1	NOCV 2	NOCV 1+2	NOCV total
			(arene→M)	(M→arene)		
1a	-1581.83769205	-73.8	-31.6	-6.8	-38.4	-56.6
1b_ 1,2	-1681.09138313	-63.8	-21.2	-2.8	-24.0	-40.2
1b_ 2,3	-1681.09464906	-72.4	-30.2	-7.2	-37.3	-56.4
1b_ 3,4	-1681.09383741	-70.2	-28.6	-6.0	-34.6	-52.8
1c_ 1,2	-1780.33691113	-51.8	-9.1	-1.9	-11.0	-23.3
1c_ 2,3	-1780.34048612	-61.2	-18.4	-3.1	-21.5	-38.3
1c_ 3,4	-1780.34344070	-69.0	-26.6	-6.2	-32.9	-52.3
1c_ 4,5	-1780.34294412	-67.7	-27.1	-5.7	-32.8	-51.6
1d_ 1,2	-1780.34759673	-63.0	-21.1	-3.1	-24.2	-41.0
1d_ 3,4	-1780.34695140	-61.3	-20.9	-2.7	-23.6	-40.2
1d_ 4,5	-1780.34989114	-69.0	-28.3	-6.5	-34.8	-53.9
1e_ 1,2	-1780.34534824	-60.2	-18.0	-2.5	-20.5	-37.0
1e_ 2,3	-1780.34917565	-70.3	-29.0	-7.9	-8.8	-57.2
Benzene	-232.25317265	-	-	-	-	-
$FC_{6}H_{5}$	-331.51066553	-	-	-	-	-
$1,2-F_2C_6H_4$	-430.76074338	-	-	-	-	-
1,3-F ₂ C ₆ H ₄	-430.76717331	-	-	-	-	-
$1,4-F_2C_6H_4$	-430.76598094	-	-	-	-	-
[Rh(CNC-Me)(biph)]⁺	-1349.55642465	-	-	-	-	-

Table S2. Calculated binding energies and NOCV orbital stabilisation energies for the {Rh(CNC-Me)(biph)}⁺/arene fragmentation (kJ mol⁻¹).

Figure S36. Plot showing the correlation between binding energy and total NOCV orbital stabilisation

energy.

Figure S37. Plot showing the correlation plot binding energy and the sum of the NOCV 1 (arene \rightarrow M) and NOCV 2 (M \rightarrow arene) orbital stabilisation energies.

 Table S3. Deformation densities associated with the {Rh(CNC-Me)(biph)}*/arene fragmentation.

 Charge flow from red to blue.

1d_1,2

 $\Delta E_{\rho 1}$ = -21.1 kJ mol⁻¹

 $v_1 = 0.225$

 $\Delta E_{\rho 2}$ = -2.5 kJ mol⁻¹

*v*₂ = 0.074

 $\Delta E_{\rho 1}$ = -18.0 kJ mol⁻¹

*v*₁ = 0.211

7. References

- ¹ W. E. Buschmann, J. S. Miller, K. Bowman-James and C. N. Miller, *Inorg. Synth.*, 2002, **33**, 83–91.
- ² D. S. McGuinness, J. A. Suttil, M. G. Gardiner and N. W Davies, *Organometallics*, 2008, **27**, 4238–4247.
- ³ C. N. Iverson and W. D. Jones, *Organometallics*, 2001, **20**, 5745–5750.
- ⁴ F. Neese, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2018, **8**, e1327; F. Neese, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2012, **2**, 73–78;
- ⁵ Y.-S. Lin, G.-D. Li, S.-P. Mao and J.-D. Chai, *J. Chem. Theory Comput.* 2013, **9**, 263–272; S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.* 2010, **132**, 263–272.
- ⁶ F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297–3305; T. Leininger, A. Nicklass,
 W. Küchle, H. Stoll, M. Dolg and A. Bergner, *Chem. Phys. Lett.* 1996, **255**, 274–280.
- ⁷ F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.* 2009, **356**, 98–109; F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057–1065.
- ⁸ A. Altun, F. Neese and G. Bistoni, *J. Chem. Theory Comput.* 2019, **15**, 215–228; M. P. Mitoraj, A. Michalak and T. Ziegler, *J. Chem. Theory Comput.* 2009, **5**, 962–975.