Supplementary Information

Enhanced electrical and broad spectral (UV-Vis-NIR) photodetection in Gr/ReSe₂/Gr heterojunction

Ehsan Elahi^{1#}, Muhammad Farooq Khan^{2#*}, Shania Rehman^{2#}, H.M. Waseem Khalil³, Malik

Abdul Rehman⁴, Deok-kee Kim²*, Honggyun Kim², Karim Khan^{5,6}, Moazzam Shahzad⁷,

Muhammad Wagas Igbal¹ and Muhammad Abdul Basit⁸ and Fasihullah Khan⁹

¹Department of Physics, Riphah International University, 14 Ali Road, Lahore, Pakistan. ²Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Korea.³Department of Electrical Engineering, College of Engineering and Technology, University of Sargodha, Pakistan. ⁴Department of Nanotechnology and Advanced Material Engineering and Graphene Research Institute, Sejong University, Seoul 05006, Korea. ⁵School of Electrical Engineering & Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, China. ⁶Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China. ⁷Federal Urdu University of Science and Technology G-7/1, Islamabad, Pakistan. ⁸Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan. ⁹Davision of Electronics and Electrical Engineering, Dongguk University, 04620 Seoul, Korea.

These authors contributed equally.

Corresponding authors: mfk@sejong.ac.kr & Deokkeekim@sejong.ac.kr

S1. Raman spectra of ReSe₂ and graphenes.

Figure S1. (a) The Raman spectrum of multilayer ReSe₂. (b) The Raman spectrum of bottom and top CVD graphenes. (c) The zoom in view of 'D' peaks of G_B and G_T . The data of Figure S1c is take from Figure S1b.

S2. Measurement of Schottky barrier height

Figure S2. (a) Arrhenius plot ln (I_s/T^2) vs 1000/T at various back-gate voltages. **(b)** Extraction of Schottky barrier height values from the Arrhenius plot under each V_g .

Gate and wavelength dependent $\mathbf{I}_{sc}\textbf{.}$

Figure S3. The dependence of I_{sc} at different back gate voltages and wavelength numbers.

Figure S4. (a) Temporal response of our devices after 25 days at **PP** = 1064 nm. (b) The photoresponsivity of GT-ReSe2-GB photodetectors at different back gate voltages. The performance of devices looks almost stable after 25 days.

Figure 5S. Rise and decay times of G_B -ReSe₂- G_T photodetector at different power densities.