Supporting Information

Sonochemical synthesis of microscale Zn(II)-MOF with dual Lewis basic

sites for fluorescent turn-on detection of Al³⁺ and methanol with low

detection limits

Theanchai Wiwasuku,^a Jintana Othong,^a Jaursup Boonmak,^{*a} Vuthichai Ervithayasuporn,^b and Sujittra Youngme^a

^a Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

^bCenter of Excellence for Innovation in Chemistry, and Center for Inorganic and Materials Chemistry, Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand

* E-mail: jaursup@kku.ac.th

Fig. S1 PXRD patterns of the simulated, and as-synthesized **Zn-MOF** prepared by direct method, solvothermal method, and sonochemical method using soduim acetate as a modulator.

Fig. S2 PXRD patterns of Zn-MOF prepared under sonochemical method with the addition of various modulators.

Fig. S3 PXRD patterns of **Zn-MOF** prepared under sonochemical method with various contents of sodium acetate (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6 and (g) 0.7 mmol.

Fig. S4 FTIR spectra of **Zn-MOF** obtained from solvothermal method in the absence of sodium acetate (a) sonochemical method in the presence of sodium acetate (b) and acetic acid (c).

Fig. S5 PXRD patterns of Zn-MOF prepared under sonochemical method with various sonication times of (a) 20 (b) 40 (c) 60 and (d) 90 min.

Fig. S6 The particle size distribution of **Zn-MOF** particles from the optimized condition (inset is Tyndall effect of a colloidal suspension of **Zn-MOF** in DMF and ethanol).

Fig. S7 TGA of microcrystalline sample and single crystal of Zn-MOF.

Fig. S8 Fluorescent spectra of free NH₂-H₂bdc, 4,4'-bpy and **Zn-MOF** treated with Al³⁺ in DMF.

Blank	Fluorescent intensity
1	1084.871
2	1106.897
3	1055.158
4	1127.844
5	1083.121
6	1092.382
7	1110.127
8	1076.111
9	1121.212
10	1061.028
Standard deviation (σ)	24.4662
Slope (S)	2452.37
Limit of detection (LOD) $(3\sigma/S)$	30.00 nM

Table S1. Calculation of LOD for Al³⁺

Fig. S9 The linear enhancement response of bulk crystals Zn-MOF toward Al³⁺.

Fig. S10 (a) ¹H NMR spectra of **Zn-MOF**, 4,4'-bpy, NH₂-H₂bdc, and **Zn-MOF** in the presence of Al³⁺. (b) ESI-MS spectra of **Zn-MOF** in the presence of Al³⁺.

Fig. S11 UV-vis spectra of free NH_2 - H_2bdc , 4,4'-bpy and Zn-MOF with and without Al^{3+} in DMF.

(a)

Blank	Fluorescent intensity
1	2361.525
2	2321.925
3	2312.565
4	2371.134
5	2265.447
6	2391.375
7	2333.263
8	2456.372
9	2372.212
10	2299.29
Standard deviation (σ)	54.0246
Slope (S)	2314.943
Limit of detection (LOD) $(3\sigma/S)$	0.07 % (V/V)
Table 62 Calculation of LOD for mothemal	

Table S2 Calculation of LOD for methanol

Fig. S12 The linear enhancement response of bulk phase Zn-MOF toward methanol.

Fig. S13 (a) Fluorescent responses of Zn-MOF toward various alcohols. The black bar

denotes the fluorescent intensities of **Zn-MOF** in various alcohols, and red bar denotes the fluorescent intensities of **Zn-MOF** upon addition of mixture methanol and other alcohols with the ratio of 1:1 (b) Recycle test for methanol sensing by **Zn-MOF**.

Fig. S14 PXRD patterns of the as-synthesized Zn-MOF and Zn-MOF immersed in pure methanol for 1 day.

Fig. S15 ¹H NMR spectra of **Zn-MOF**, 4,4'-bpy, NH₂-H₂bdc, and **Zn-MOF** in the presence of MeOH.