Electronic Supplementary Information

On the role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dots sensitizers

Elisabetta Benazzi,*a Valerio C. Coni, a Mattia Boni, a Raffaello Mazzaro,^b Vittorio Morandi,^b and Mirco Natali *a,^b

^{a.} Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.

E-mail: elisabetta.benazzi@unife.it, mirco.natali@unife.it.

^{b.} CNR-IMM Bologna, Via P. Gobetti 101, 40139 Bologna, Italy

^{c.} Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), sez. di Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.

Figure S1. Absorption spectra of a) **MAA** and b) **MSA** QDs at different time during the synthesis ([QDs] = $3.2-11 \mu$ M for **MAA** QDs, [QDs] = $1.3-19 \mu$ M for **MSA** QDs, aqueous solutions, pH 10.5).

Figure S2. Emission spectra of a) **MAA** and b) **MSA** QDs at different time during the synthesis ([QDs] = $3.2-11 \mu$ M for **MAA** QDs, [QDs] = $1.3-19 \mu$ M for **MSA** QDs, aqueous solutions, pH 10.5, excitation is performed at the absorption maximum of the excitonic band, see Figure S1).

Figure S3. Fluorescence decay of **MPA** QDs with d = 3.3 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 50 \text{ ns} (84\%)$, $\tau_2 = 19 \text{ ns} (11\%)$, $\tau_3 = 1.4 \text{ ns} (5\%)$, average lifetime is equal to $\langle \tau \rangle = 44 \text{ ns}$.

Figure S4. Fluorescence decay of **MPA** QDs with d = 2.8 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: τ_1 = 44 ns (61%), τ_2 = 22 ns (32%), τ_3 = 1.7 ns (7%), average lifetime is equal to $\langle \tau \rangle$ = 34 ns.

Figure S5. Fluorescence decay of **MAA** QDs with d = 3.2 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: τ_1 = 34 ns (35%), τ_2 = 2.5 ns (26%), τ_3 = 12 ns (39%), the average lifetime is $\langle \tau \rangle$ = 17 ns.

Figure S6. Fluorescence decay of **MAA** QDs with d = 2.6 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: τ_1 = 31 ns (28%), τ_2 = 11 ns (44%), τ_3 = 2 ns (28%), the average lifetime is $\langle \tau \rangle$ = 14 ns.

Figure S7. Fluorescence decay of **MSA** QDs with d = 3.4 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 56 \text{ ns} (44\%)$, $\tau_2 = 5 \text{ ns} (14\%)$, $\tau_3 = 25 \text{ ns} (42\%)$, the average lifetime is $\langle \tau \rangle = 36 \text{ ns}$.

Figure S8. Fluorescence decay of **MSA** QDs with d = 2.8 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: τ_1 = 63 ns (17%), τ_2 = 4 ns (28%), τ_3 = 22 ns (55%), the average lifetime is $\langle \tau \rangle$ = 24 ns.

Figure S9. Fluorescence decay of **MPA** QDs with d = 1.7 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 3 \text{ ns} (48\%)$, $\tau_2 = 18 \text{ ns} (45\%)$, $\tau_3 = 80 \text{ ns} (7\%)$, the average lifetime is $\langle \tau \rangle = 15 \text{ ns}$.

Figure S10. Fluorescence decay of **MPA** QDs with d = 2.4 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting lead to three time-constants: $\tau_1 = 12$ ns (69%), $\tau_2 = 3$ ns (38%), $\tau_3 = 19$ ns (50%), the average lifetime is $\langle \tau \rangle = 19$ ns.

Figure S11. Fluorescence decay of **MPA** QDs with d = 3.1 nm in water measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 56 \text{ ns} (44\%)$, $\tau_2 = 5 \text{ ns} (14\%)$, $\tau_3 = 25 \text{ ns} (42\%)$, the average lifetime is $\langle \tau \rangle = 35 \text{ ns}$.

Table S1: EDS Elementary composition of **MPA**, **MSA** and **MAA** QDs samples reported as atomic concentration ratio in order to correlate Cd, Te and S content. Sample **MPA** after photocatalysis experiment is also reported for comparison purpose.

At %	MPA	MSA	MAA	MPA after photocatalysis
Te/Cd	12,6	20,3	24,7	32,5
S/Cd	51,7	52,4	59,0	82,0
Te/S	24,9	38,6	42,6	39,6

Figure S12. Cyclic voltammetries of **MPA**-capped QDs (2.6-8.9 μ M) with different size (a) d = 1.7 nm, b) d = 2.4 nm, c) d = 2.8 nm, d) d = 3.1 nm, and e) d = 3.3 nm. Experimental conditions: aqueous solutions with 0.1 M LiClO₄, scan rate of 20 mV/s, GC as the working electrode, SCE as the reference, and Pt as the counter electrode, the arrow indicates the direction of the scan.

Figure S13. Cyclic voltammetries of **MSA**-capped QDs with different size (a) $d = 2.8 \text{ nm} (2.9 \mu \text{M})$ and f) $d = 3.4 \text{ nm} (1.3 \mu \text{M})$. Experimental conditions: aqueous solutions with 0.1 M LiClO₄, scan rate of 20 mV/s, GC as the working electrode, SCE as the reference, and Pt as the counter electrode, the arrow indicates the direction of the scan.

Figure S14. Cyclic voltammetries of **MAA**-capped QDs with different size (a) $d = 2.6 \text{ nm} (5.8 \mu \text{M})$ and f) $d = 3.2 \text{ nm} (3.2 \mu \text{M})$. Experimental conditions: aqueous solutions with 0.1 M LiClO₄, scan rate of 20 mV/s, GC as the working electrode, SCE as the reference, and Pt as the counter electrode, the arrow indicates the direction of the scan.

Figure S15. (a) Moles of H₂ produced vs time at pH = 5 for d = $2.7(\pm 0.1)$ nm QDs (4.7 µM for **MPA**, 5.8 µM for **MAA**, 2.9 µM for **MSA**) with different stabilizing agents (aqueous solution, buffer ascorbate = 1.68 M, [1] = 50 µM); maximum TOFs normalized with respect to the fraction of photons absorbed.

Figure S16. (a) Moles of H₂ produced vs time at pH = 5 for d = $3.3(\pm 0.1)$ nm QDs (2.6 μ M for **MPA**, 3.2 μ M for **MAA**, 1.3 μ M for **MSA**) with different stabilizing agents (aqueous solution, buffer ascorbate = 1.68 M, [1] = 50 μ M); (b) maximum TOFs normalized with respect to the fraction of photons absorbed.

Figure S17. (a,b) Low magnification TEM image of **MPA**-capped QDs after photocatalysis experiment; (c) high magnification HR-TEM detail of a single quantum dot (inset) and relative Fast Fourier Transformate for **MPA**-capped QDs after photocatalysis experiment; d) elemental distribution along a linear profile of a QDs aggregate in the same sample, displayed in the reference STEM-HAADF micrograph in the inset; g) size distribution analysis and Lorentzian fitting of **MPA**-capped QDs obtained in STEM-HAADF mode, displaying an evident increase in average size and polydispersity.

Figure S18. Emission spectra in water recorded at increasing catalyst concentration of **MPA** QDs with (a) $d = 3.3 \text{ nm} (2.6 \mu\text{M})$ and (b) $d = 2.8 \text{ nm} (4.7 \mu\text{M})$.

Figure S19. Emission spectra in water recorded at increasing catalyst concentration of **MAA** QDs with (a) $d = 3.2 \text{ nm} (3.2 \mu \text{M})$ and (b) $d = 2.6 \text{ nm} (5.8 \mu \text{M})$.

Figure S20. Emission spectra in water recorded at increasing catalyst concentration of **MSA** QDs with (a) d = 3.4 nm (1.3 μ M) and (b) d = 2.8 nm (2.9 μ M).

Figure S21. Stern-Volmer plots of (a) $d = 3.3 \text{ nm} (2.6 \mu\text{M})$, (b) $d = 2.8 \text{ nm} (4.7 \mu\text{M})$ **MPA** QDs; (c) $d = 3.4 \text{ nm} (1.3 \mu\text{M})$, (d) $d = 2.8 \text{ nm} (2.9 \mu\text{M})$ **MSA** QDs; (e) $d = 3.2 \text{ nm} (3.2 \mu\text{M})$, (f) $d = 2.6 \text{ nm} (5.8 \mu\text{M})$ **MAA** QDs.

	K _{SV} M ⁻¹	k _Q
MPA QDs, d = 2.8 nm	9760	2.9×10^{11}
MPA QDs, d = 3.3 nm	16850	3.8×10^{11}
MSA QDs, d = 2.8 nm	9290	3.8×10^{11}
MSA QDs, d = 3.4 nm	16430	4.6 × 10 ¹¹
MAA QDs, d = 2.6 nm	7530	5.4 × 10 ¹¹
MAA QDs, d = 3.2 nm	14190	8.2×10^{11}

Table S2: K_{SV} and k_Q values of MPA, MSA and MAA QDs

Figure S22. Emission decays of MPA QDs (2.6 μ M) in aqueous solution measured by laser flash photolysis (excitation at 532 nm) in the presence and in the absence of 50 μ M 1.

Figure S23. Emission spectra of (a) **MPA** QDs with $d = 3.3 \text{ nm} (2.6 \mu\text{M})$ and (b) **MPA** QDs with $d = 2.8 \text{ nm} (4.7 \mu\text{M})$ in aqueous solution in the absence and in the presence of 1.68 M ascorbate (pH 5).

Figure S24. Emission spectra of (a) **MAA** QDs with $d = 3.2 \text{ nm} (3.2 \mu\text{M})$ and (b) **MAA** QDs with $d = 2.6 \text{ nm} (5.8 \mu\text{M})$ in aqueous solution in the absence and in the presence of 1.68 M ascorbate (pH 5).

Figure S25. Emission spectra of (a) **MSA** QDs with $d = 3.4 \text{ nm} (1.3 \mu\text{M})$ and (b) **MSA** QDs with $d = 2.8 \text{ nm} (2.9 \mu\text{M})$ in aqueous solution in the absence and in the presence of 1.68 M ascorbate (pH 5).

Figure S26. Fluorescence decay of **MPA** QDs with d = 3.3 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 58$ ns (10%), $\tau_2 = 22$ ns (46%), $\tau_3 = 8$ ns (44%), the average lifetime is $\langle \tau \rangle = 19$ ns.

Figure S27. Fluorescence decay of **MSA** QDs with d = 3.4 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 18$ ns (2%), $\tau_2 = 2.7$ ns (22%), $\tau_3 = 0.7$ ns (76%), the average lifetime is $\langle \tau \rangle = 1.44$ ns.

Figure S28. Fluorescence decay of **MAA** QDs with d = 3.2 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 31$ ns (6%), $\tau_2 = 7$ ns (28%), $\tau_3 = 1.3$ ns (66%), the average lifetime is $\langle \tau \rangle = 4.7$ ns.

Figure S29. Fluorescence decay of **MAA** QDs with d = 2.6 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 22.7$ ns (12%), $\tau_2 = 5$ ns (39%), $\tau_3 = 1.4$ ns (49%), the average lifetime is $\langle \tau \rangle = 5.3$ ns.

Figure S30. Fluorescence decay of **MPA** QDs with d = 2.8 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 22$ ns (12%), $\tau_2 = 5$ ns (39%), $\tau_3 = 1.4$ ns (49%), the average lifetime is $\langle \tau \rangle = 5.5$ ns.

Figure S31. Fluorescence decay of **MSA** QDs with d = 2.8 nm in water in the presence of 1.68 M ascorbate (pH 5) measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Triexponential fitting leads to three time-constants: $\tau_1 = 22 \text{ ns} (4\%)$, $\tau_2 = 5.6 \text{ ns} (26\%)$, $\tau_3 = 1.3 \text{ ns} (70\%)$, the average lifetime is $\langle \tau \rangle = 3.1 \text{ ns}$.

	τ_0 (ns)	τ _{buffer} (ns)	Quenching efficiency	k (s ⁻¹)
MPA QDs, d = 2.8 nm	33	5.5	83 %	1.5×10^{8}
MPA QDs, d = 3.3 nm	44	19	57 %	3.0×10^{7}
MAA QDs, d = 2.6 nm	14	5.3	62 %	1.1×10^{8}
MAA QDs, d = 3.2 nm	17	4.7	73 %	1.5×10^{8}
MSA QDs, d = 2.8 nm	24	3.1	87 %	2.8×10^{8}
MSA QDs, d = 3.4 nm	35	1.4	95 %	6.8×10^{8}

Table S3. lifetime of QDs in the presence and in the absence of 1.68 M ascorbate (pH 5), along with quenching efficiency.

Figure S32: Kinetic decay at 580 nm of **MPA** QDs ($2.6 \mu M$) in aqueous solution followed by laser flash photolysis (excitation at 532 nm).

Figure S33. Kinetic decay at 580 nm of **MPA** QDs (2.6 μ M) in aqueous solution in the presence of 1.68 M ascorbate buffer (pH 5) followed by laser flash photolysis (excitation at 532 nm).

Figure S34. Kinetic decay at 580 nm of **MPA** QDs (2.6 μ M) in aqueous solution in the presence of 1.68 M ascorbate buffer (pH 5) and 50 μ M 1 followed by laser flash photolysis (excitation at 532 nm).

Figure S35. Absorbed spectral irradiance of a solution containing 2.6 μ M QDs with d = 3.3 nm, 1.68 M buffer ascorbate at pH = 5, 50 μ M **1**. Integration of the curve yields an absorbed photon flux per surface area of 1.6 $\cdot 10^{21}$ photons/s·m², considering the irradiated surface area of 0.0005 m² an absorbed photon flux of 8.3 $\cdot 10^{17}$ photons/s can be calculated.