Supporting Information

Additional experimental methods:

Materials: Na₂WO₄·2H₂O, Na₂HPO₄·2H₂O, Cr(NO₃)₃·9H₂O, Fe(NO₃)₃·9H₂O, AlCl₃·6H₂O, Cu(NO₃)₂·3H₂O, NiCl₂·6H₂O, ZnCl₂, MgCl₂·6H₂O, CaCl₂, Y(NO₃)₃·9H₂O, H₃[α -PMo₁₂O₄₀]·*n*H₂O, conc. HCl, cyanoacetic acid, acetone, methanol, butanol, toluene, benzaldehyde and distilled water were purchased from Kanto Chemical Co. Inc. and used as received. H₃[α -PW₁₂O₄₀]·*n*H₂O was synthesized according to the literature.^{S1} Allyltributyltin and 1,2-dimethoxybenzene (internal standard) were purchased from TCI Co. Ltd. and used as received. InCl₃·4H₂O was purchased from FUJIFILM Wako Pure Chemical Corporation.

Synthesis of $[Cr_3O(OOCCH_2CN)_6(H_2O)_3](NO_3)$: $Cr(NO_3)_3 \cdot 9H_2O$ (40 g, 0.10 mol) and cyano acetic acid (25 g, 0.29 mol) were dissolved in 300 mL of acetone, and the solution was stirred at 333 K for 6 h. The solution was concentrated by evaporation, water was added as a poor solvent, and $[Cr_3O(OOCCH_2CN)_6(H_2O)_3](NO_3)$ was obtained as a green powder (22 g, yield 90 % based on cyanoacetic acid). ^{S1}J. C. Bailar Jr., H. S. Booth and M. Grennert, *Inorg. Synth.*, 1939, **1**, 132.

Figure S1. SEM-EDX images: (a) I-Fe³⁺, (b) I-Cr³⁺, (c) I-Y³⁺, (d) I-Ni²⁺, (e) I-Mg²⁺, and (f) II-Cr³⁺. SEM images (left), elemental maps of tungsten or molybdenum in the POMs (middle), and elemental maps of the incorporated metals (right).

Figure S2. IR spectra of $I-Cr^{3+}$ and $II-Cr^{3+}$ measured by KBr method. Band assignments of the macrocation are shown.

Figure S3. Thermogravimetry of **II-Cr³⁺**. The weight loss up to 150 °C is 15.8% and is equal to the weight of 50 water of crystallization and 9 water ligands of the macrocation.

Figure S4. Solid-state ¹H-MASNMR spectrum of **II-Cr³⁺** (MAS = 10kHz). Asterisks denote the spinning side bands.

Figure S5. ¹H-NMR spectrum of the reaction solution.

Figure S6. Time courses of the Barbier-Grignard reaction catalyzed by $I-Cr^{3+}$ or $II-Cr^{3+}$.