Electronic Supplementary Information

Formation of Hollow Porous TiO₂ Nanospheres via Encapsulation of CO₂ Nanobubbles for High-Performance of Adsorption and Photocatalysis

H. K. Lee, $*^{a,b}$ and *S. W. Lee* $*^{a,c}$

a Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan

b Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Korea

c EnH Japan Co. Ltd., 3-3-2 Honjogakendai, Yahatanishi, Kitakyushu 807-0807, Japan

* E-mail address: leehk@kier.re.kr (H.K. Lee), leesw@kitakyu-u.ac.jp (S.W. Lee).

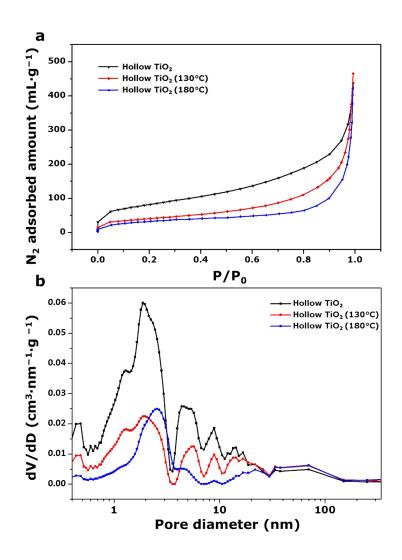
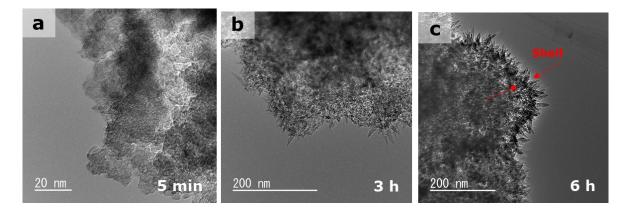



Fig. S1. (a) Nitrogen adsorption isotherms and pore size distribution of hollow porous TiO_2 nanospheres prepared at 90°C and additional hydrothermally treated sample at 130°C and 180°C.

Fig. S2. TEM images of TiO_2 samples obtained according to the reaction time by mixing $[NH_4]_2TiF_6$ and NaHCO₃ solution at 90°C.

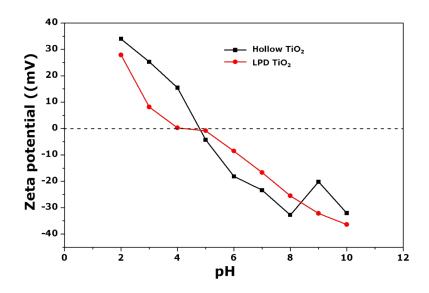


Fig. S3. pH dependence of the zeta potential of hollow porous TiO_2 nanospheres and conventional LPD TiO_2 nanoparticles.

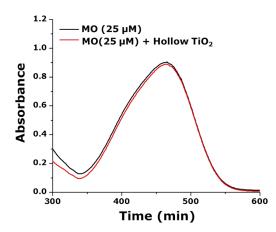


Fig. S4. UV–vis absorption spectra of 25 μ M MO solutions in the presence of hollow porous TiO₂ nanospheres.

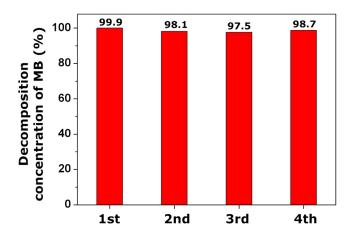
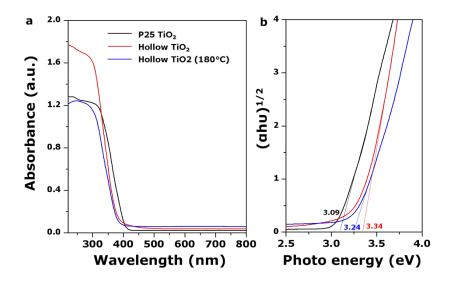



Fig. S5. Photocatalytic degradation of MB with hollow porous TiO_2 treated at 180°C in different recycling time. The reaction were conducted for 60 min.

Fig. S6. (a) Comparative UV-visible diffuse absorbance spectra and (b) plots of $(\alpha hv)^{1/2}$ vs. the energy of absorbed light of commercial P25 TiO₂ nanoparticles, and pristine and hydrothermally treated (180°C) hollow porous TiO₂ nanospheres