Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Copper(II) and Zn(II) Complexes of Mono- and Bis-(1,2,3-triazole)-substituted Heterocyclic Ligands

Natalija Pantalon Juraj,^a Marko Krklec,^{a,b} Tiana Novosel,^{a,b} Berislav Perić,^a Robert Vianello,^{*,a} Silvana Raić-Malić^{*,b} and Srećko I. Kirin^{*,a}

^aRuđer Bošković Institute, Zagreb, Croatia

^bFaculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia

E-mail: Robert.Vianello@irb.hr, sraic@fkit.hr, Srecko.Kirin@irb.hr

Content:

Synthesis

Crystallography

NMR spectroscopy

UV-Vis spectroscopy

DFT calculations

NMR spectra of compounds 1, 7, 8a-13a

IR spectroscopy

References

Synthesis

Figure S1. Prepared alkynes 1-7.

Figure S2. Prepared mono-1,2,3-triazoles 8a-8d.

Figure S3. Prepared bis-1,2,3-triazoles **9a-9d**.

Figure S4. Prepared bis-1,2,3-triazoles 10a-10d.

Figure S5. Prepared ester **11a**, carboxylic acid **12a** and bioconjugate **13a**.

Figure S6. Propargylation reaction of aliphatic amine Methyl-4-(aminomethyl)benzoate gave a significantly lower yield than with the corresponding aromatic amine.

Figure S7. Structures of ligands **8a**, **8d** and **14a-14d** used in calculations.

Crystallography

	10a	10c	8a _{Cu}
Formula	C ₂₅ H ₂₀ N ₈ S	C ₂₇ H ₂₄ N ₈ S	C ₃₈ H ₃₂ B ₂ CuF ₈ N ₁₂
F _w (g mol ⁻¹)	464.55	492.60	893.93
Temperature (K)	293(2)	129(7)	293(2)
Crystal size (mm)	0.3×0.1×0.05	0.3×0.1×0.05	0.2×0.03×0.02
Crystal colour	yellow	yellow	light-blue
Crystal system	orthorhombic	tetragonal	triclinic
Space group	<i>Pbca</i> (Nr. 61)	<i>I</i> 4 ₁ / <i>a</i> (Nr. 88)	<i>P</i> 1̄ (Nr. 2)
a (Å)	15.1305(7)	41.5083(4)	8.7077(12)
b (Å)	10.1117(3)	41.5083(4)	10.2766(13)
<i>c</i> (Å)	29.9520(9)	5.58160(10)	11.6856(13)
α(°)	90	90	72.850(11)
β(°)	90	90	75.004(11)
γ(°)	90	90	86.999(11)
V (Å ³)	4582.5(3)	9616.8(3)	964.8(2)
Ζ	8	16	1
D _{calc}	1.347	1.361	1.539
F(000)	1936	4128	455
Refins. collected	14281	11842	8434
Independ. reflns.	4701	4872	3958
R _{init}	0.0348	0.0480	0.0672
Reflns. observed [<i>I>2o</i> (<i>I</i>)]	3298	4182	2381
Parameters	307	344	305
$R[l>2\sigma(l)]^a$	0.0790	0.0510	0.0804
wR ₂ (all data) ^b	0.2784	0.1366	0.2821
Goof, S ^c	1.068	1.050	1.053
Max./Min. res. el. dens.	0.503/-0.503	0.213/-0.235	0.611/-0.751

Table S1. Experimental data for X-ray diffraction studies (part 1).

^{*a*} R = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{*b*} wR₂ = { $\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$ }^{1/2}. ^{*c*} S = { $\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)$ }^{1/2} where *n* is number of reflections and *p* is total number of parameters refined.

	8d _{Cu}	9c _{Cu}	10c _{Cu}
Formula	$C_{44}H_{56}CuF_6N_{12}O_6S_2Si$	C ₅₂ H _{51.4} CuF ₆ N ₁₄ O _{0.7} Si	C ₅₄ H _{55.2} CuF ₆ N ₁₆ O _{3.6} S ₂ Si
F _w (g mol ⁻¹)	1118.75	1089.39	1255.7
Temperature (K)	293(2)	293(2)	293(2)
Crystal size (mm)	0.2×0.08×0.03	0.3×0.2×0.1	0.3×0.2×0.1
Crystal colour	purple	brown	pink
Crystal system	triclinic	monoclinic	monoclinic
Space group	<i>P</i> 1̄ (Nr. 2)	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)
a (Å)	8.4563(8)	10.6299(3)	11.5387(5)
<i>b</i> (Å)	10.9214(12)	16.4545(4)	16.3557(5)
<i>c</i> (Å)	15.1689(18)	16.1189(7)	16.1961(7)
α (°)	71.891(10)	90	90
β(°)	78.582(9)	110.830(3)	106.089(5)
γ(°)	71.330(9)	90	90
V (Å ³)	1253.9(3)	2635.08(16)	2936.9(2)
Ζ	1	2	2
D _{calc}	1.482	1.373	1.420
F(000)	581	1128	1298
Reflns. collected	1760	14816	8576
Independ. reflns.	1081	5390	4517
R _{init}	0.0388	0.0266	0.0424
Reflns. observed [$I>2\sigma(I)$]	729	4498	3263
Parameters	240	368	364
$R[I>2\sigma(I)]^a$	0.0401	0.0559	0.0586
wR ₂ (all data) ^b	0.0766	0.1829	0.1730
Goof, S ^c	0.856	1.062	1.016
Max./Min. res. el. dens.	0.160/-0.189	1.010/-0.186	0.756/-0.311

Table S1. Experimental data for X-ray diffraction studies (part 2).

 o R = $\Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$. b wR₂ = { $\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}$. c S = { $\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n-p)$ }^{1/2} where *n* is number of reflections and *p* is total number of parameters refined.

ORTEP-III drawings and crystal packing of ligands **10a** and **10c** and complexes **8a**_{cu}, **8d**_{cu}, **9c**_{cu} and **10c**_{cu}.

a)

Figure S8. (a) ORTEP-III¹ drawing with atom labelling scheme for ligand **10a**. All ellipsoids were drawn at the 30% probability level. (b) Packing of molecules in the crystal structure of **10a**.² Molecules related by different symmetry operations are coloured in different colours.

b)

Figure S9. (a) ORTEP-III¹ drawing with atom labelling scheme for ligand **10c**. All ellipsoids were drawn at the 30% probability level. Positions of disordered atoms with lower occupancy (N1b and S1b) are shown as empty ellipsoids and their bonds are shown as dashed lines. (b) Packing of molecules in the crystal structure of **10c**.² Molecules related by different symmetry operations are coloured in different colours.

Figure S10. ORTEP-III¹ drawing with atom labelling scheme for complex **8a**_{cu}. All ellipsoids were drawn at the 30% probability level. The complex cation is located at the position with a centre of symmetry. One ligand is shown bold and the other one, which is related by the centre of symmetry is shown light [symmetry code (i): 1-*x*, 1-*y*, 1-*z*]. Coordination bonds in the cation are shown as dashed lines. The BF₄⁻ anion is located at a general crystallographic position. Positions of disordered atoms with lower occupancy (B1_2, F1_2, F2_2, F3_2 and F4_2) are shown as empty ellipsoids and their bonds are shown as dashed lines.

Figure S11. Packing of complex cation (red and orange) and two BF_4^- anions (dark and light green); in the crystal structure of **Ba**_{cu}.

Figure S12. ORTEP-III¹ drawing with atom labelling scheme for complex **8d**_{cu}. All ellipsoids were drawn at the 30% probability level. One ligand is shown bold and other one, which is related by the centre of symmetry in the Cu1 atom is shown light [symmetry code (i): 1-*x*, 1-*y*, 1-*z*]. Coordination bonds in the cation are shown as dashed lines. The SiF₆²⁻ anion is located at another centre of symmetry [symmetry code (ii): 2-*x*, -*y*, 1-*z*].

Figure S13. Packing of the complex cation (red and orange) and SiF_6^{2-} anions (dark and light green); in the crystal structure of $8d_{cu}$.

Figure S14. ORTEP-III¹ drawing with atom labelling scheme for complex $9c_{cu}$. All ellipsoids were drawn at the 30% probability level. Positions of atoms of one phenyl ring having lower occupancy (C11b_1 – C17b_1) are shown as empty ellipsoids. One ligand is shown bold and other one, which is related by a centre of symmetry in the Cu1 atom is shown light [symmetry code (i): 1-*x*, 1-*y*, 1-*z*]. Coordination bonds in the cation are shown as dashed lines. The SiF₆²⁻ anion is located at another centre of symmetry [Symmetry code (ii): 1-*x*, -*y*, 1-*z*].

Figure S15. Packing of complex cation (red and orange) and SiF_6^{2-} anions (dark and light green); in the crystal structure of $\mathbf{9c}_{cu}$.

Figure S16. ORTEP-III¹ drawing with atom labelling scheme for complex **10c**_{cu}. All ellipsoids were drawn at the 30% probability level. One ligand is shown bold and other one, which is related by a centre of symmetry in the Cu1 atom is shown light [symmetry code (i): 1-*x*, 1-*y*, 1-*z*]. Coordination bonds in the cation are shown as dashed lines. The SiF₆²⁻ anion is located at another centre of symmetry [Symmetry code (ii): 1-*x*, -*y*, 1-*z*].

Figure S17. Packing of the complex cation (red and orange) and SiF_6^{2-} anions (dark and light green); in the crystal structure of **10c**_{cu}.

Table S2. CSD search of ML_2 complexes of tridentate nitrogen ligands with Cu(II).

	structure	octahedra: axial bond / Å	reference
H H H N N Cu ²⁺	JEPPAY	elongated: 2.364, 2.455	Yang Wang, Haixiong Liu, Xiaofeng Zhang, Zilong Zhang, Deguang Huang, <i>Org.Biomol.Chem.</i> (2017), 15 , 9164
	KAYQOQ	compressed: 2.010, 2.010	Gin-Song Huang, Jen-Kou Lai, Chuen-Her Ueng, Chan-Cheng Su,
Di-(2-picolyl)amine	KAYQUW	compressed: 2.039, 2.053	Transition Met.Chem. (2000), 25 , 84
ligands	ZOQCAJ	compressed: 2.035, 2.037	M.Palaniandavar, R.J.Butcher, A.W.Addison, <i>Inorg.Chem</i> . (1996), 35 , 467
	AWUBEA	elongated: 2.296, 2.553	V.M.Nikitina, O.V.Nesterova, R.I.Zubatyuk, O.V.Shishkin, J.A.Rusanova, <i>Acta</i> <i>Crystallogr.,Sect.E:Struct.Rep.Online</i> (2011), 67 , m1023
	ETACUB	elongated: 2.459, 2.350	F.S.Stephens, <i>J.Chem.Soc.A</i> (1969), 2233
H_2N H_2	ETAMCU	compressed: 2.001, 2.019	F.S.Stephens, <i>J.Chem.Soc.A</i> (1969), 883
	QAGCAD	elongated: 2.347, 2.634	C.A.Johns, K.M.A.Malik, <i>Polyhedron</i> (2002), 21 , 395
Diethylenetriamine ligands	QAGSUN	elongated: 2.467, 2.467	M.Gonzalez-Alvarez, G.Alzuet, J.Borras, B.Macias, J.M.Montejo- Bernardo, S.Garcia-Granda, <i>Z.Anorg.Allg.Chem</i> . (2003), 629 , 239
	SEZKOY	elongated: 2.339, 2.339	G.M.G.Hossain, A.J.Amoroso, Acta Crystallogr.,Sect.E:Struct.Rep.Online (2007), 63 , m759

		elongated: 2.424, 2.456	Xiaodong Jin, R.P.Davies,
	VAIVITEL	elongated: 2.368, 2.607	Cat.Sci.Tech. (2017), 7 , 2110
			Hui-Bo Zhou, Mao Liang, Li-Na Zhu,
	XAGWAE	compressed: 2.081,	Wen Dong, Dai-Zheng Liao, Zong-
	AGWAL	2.088	Hui Jiang, Shi-Ping Yan, Peng Cheng,
			J.Coord.Chem. (2004), 57 , 865
			S.Kumar, R.P.Sharma,
		elongated: 2.541, 2.541	P.Venugopalan, Vijay Singh Gondil,
	YAYREY		S.Chhibber, T.Aree, M.Witwicki,
		V.Ferretti, Inorg.Chim.Acta (2018),	
			469 , 288
	71/11/10/01	alangatad: 2,252, 2,551	U.Florke, A.Begum, G.Henkel, CSD
		eiongaleu: 2.352, 2.551	Communication (2016)

Table S3. Selected bond lengths and angles for experimental structures $8a_{cu}$ and $8d_{cu}$.

Complex	denticity	Cu- N1_1 (Å)	Cu- N1_2 (Å)	Cu-Xª (Å)	N1_1-Cu- N1_2 (°)	X-Cu- Xª (°)	Coordination Geometry, RMSD / Å
8a _{Cu}	3	2.022	2.025	2.486	86.37	180.00	Octahedron (regular), 0.092
8d _{Cu} b	2	2.000	2.015	2.583	86.83	180.00	Octahedron (regular), 0.175

 ${}^{a}X = N3$ in **8a**_{cu} and X = O1 in **8d**_{cu}.

^bThe large R-factor of **8d**_{cu} should be noted.

Table S4. Selecte	ed bond lengths and	l angles for experime	ental structures 9c cu	and 10ccu .
-------------------	---------------------	-----------------------	-------------------------------	--------------------

		Cu-	Cu -	Cu -	N31- Cu		
		N31	N32	N2	-N32	N2- Cu -	Coordination
Complex	Isomer	Cu -	Cu -	Cu -	N31 ⁱ - Cu -	N2 ⁱ	Geometry, RMSD /
		N31 ⁱ	N32 ⁱ	N2 ⁱ	N32 ⁱ	(°)	Å
		(Å)	(Å)	(Å)	(°)		
0.0	pseudo-	1 002	1 005	2 701	02.45	100.00	Octahedron
JCCu	trans-fac	1.995	1.965	2.761	95.45	180.00	(distorted), 0.678
	pseudo-						Square plane
10c _{Cu}	trans-fac	1.977	1.995	2.873	92.33	180.00	(regular), 0.062

ⁱ symmetry related atom

Threshold coordination distance was set to 2.8 Å (default).

NMR spectroscopy

Figure S18. ¹H NMR titration of ligand **10c** with Zn(CF₃SO₃)₂.

[Zn(**8c**)₂](BF₄)₂

[Zn(8d)₂](BF₄)₂

Figure S19. ¹H NMR (CD₃CN) spectra of complexes prepared at a 2 L to 1 Zn(II) ratio (blue) compared to the free ligands **8a-8d** (red).

Figure S20. ¹H NMR (CD₃CN) spectra of complexes prepared at a 2 L to 1 Zn(II) ratio (blue) compared to the free ligands **9a-9d** (red). NMR spectra of ligands **9b** and **9c** and their complexes in acetonitrile are not shown due to limited solubility and/or peak broadening caused by intermediate ligand exchange.

Figure S21. ¹H NMR (CD₃CN) spectra of complexes prepared at a 2 L to 1 Zn(II) ratio (blue) compared to the free ligands **10a-10d** (red).

Figure S22. ¹H NMR (CD₃CN) spectra at room temperature (red) and -40°C (blue). $[Zn(9c)_2](BF_4)_2$ and ligand **9c** were recorded in CD₃OD due to peak broadening observed in acetonitrile (see also Figure S25).

Figure S23. Complexes of ligand $\mathbf{9c}$ with $Zn(BF_4)_2$, $Zn(NO_3)_2$ and $ZnBr_2$ at a 2 L : 1 Zn ratio.

Figure S24. Complexes of ligand **10c** with $Zn(BF_4)_2$, $Zn(NO_3)_2$ and $ZnBr_2$ at a 2 L : 1 Zn ratio.

Figure S25. ¹H NMR spectra of **9c** and **10c** complexes with $Zn(NO_3)_2$ and $ZnBr_2$ prepared in a 2 L : 1 Zn(II) (red) and 1 L : 6 Zn(II) (blue) ratio. The spectra of **9c** were recorded in CD₃OD, and of **10c** in CD₃CN.

Figure S26. ¹H NMR spectra of complexes prepared at a 2 **9c** to $1 \text{Zn}(BF_4)_2$ ratio in acetonitrile (bottom) and methanol (top). The ¹H NMR spectra show peak broadening in acetonitrile, indicating a ligand exchange intermediate compared to the NMR timescale, while the peaks are sharper in methanol, likely showing a fast exchange as observed in the titration of ligand **10c**.

Figure S27. ¹H NMR spectra of ligand **11a** and complex $[Zn(11a)_2](CF_3SO_3)_2$ in CDCl₃. Due to low solubility, the complex was first prepared in a mixture of dichloromethane and methanol, the solvent evaporated and the obtained solid dissolved in CDCl₃ for recording the NMR spectrum.

Figure S28. ¹H NMR spectra of ligand **13a** with 0.5 and 1.0 added equivalents of $Zn(CF_3SO_3)_2$ in CD_3CN .

Figure S29. ¹H NMR spectra of ligand **13a** with 0.5 equivalents of Zn(CF₃SO₃)₂ or Zn(BF₄)₂.

	triazole H shift (ligand) /	triazole H shift (complex) /	Δ (complex-ligand)/
ligand	ppm	ppm	ppm
8a	8.15	8.45	0.30
8b	8.15	8.36	0.21
8c	7.66	8.14	0.48
8d	7.52	8.03	0.51
9a	8.16	8.55	0.39
9b	nd	8.56	-
9с	7.59	nd	-
9d	7.92	7.53	-0.39
10a	8.27	8.58	0.31
10b	nd	8.58	-
10c	7.75	7.96	0.21
10d	7.63	8.08	0.45
11a	-	nd	-
13a	8.17	8.60	0.43

Table S5. ¹H NMR (CD₃CN) shifts of triazole protons in ligands **8a**-**10d** and their Zn(II) complexes in acetonitrile at a 2 L to 1 Zn(II) ratio.

nd = not dissolved

Table S6. ¹H NMR (CD₃CN) shifts of α -CH₂ protons in ligands **8a-10d** and their Zn(II) complexes in acetonitrile at a 2 L to 1 Zn(II) ratio.

ligand	a CH, shift (ligand) (nnm	a CH, shift (complex) (ppm	Δ (complex-ligand)/
liganu	a-ch ₂ shint (ligand) / ppin	a-ch ₂ shift (complex) / ppin	ppm
8a	5.52	5.43	-0.09
8b	5.51	5.34	-0.17
8c	5.40	5.28	-0.12
8d	5.37	5.21	-0.16
9a	4.80	4.72	-0.08
9b	nd	4.74	-
9с	4.61	nd	-
9d	4.30	4.54	0.24
10a	4.99	5.05	0.06
10b	nd	5.01	-
10c	4.80	4.72	-0.08
10d	4.72	4.67	-0.05
11a	_	nd	-
13a	4.87	4.82	-0.05

Table S7. ¹H NMR (CD₃CN) shifts of benzyl-CH₂ protons in ligands **8**c, **9**c and **10**c and their Zn(II) complexes in acetonitrile at a 2 L to 1 Zn(II) ratio.

. ,	•	、 <i>,</i>	
ligand	benzyl-CH ₂ shift (ligand) /	α -CH ₂ shift (complex) /	Δ/ppm
liganu	ppm	ppm	
8c	5.44	5.55	0.11
9c	5.45	nd	-
10c	5.47	5.21	-0.26

Table S8. ¹H NMR (CD₃CN) shifts of S-CH₂ protons in ligands **8d**, **9d** and **10d** and their Zn(II) complexes in acetonitrile at a 2 L to 1 Zn(II) ratio.

ligand	S-CH ₂ shift (ligand) / ppm	α -CH ₂ shift (complex) / ppm	Δ/ppm
8d	5.57	5.65	0.08
9d	5.54	5.61	0.07
10d	5.63	5.37	-0.26

UV-Vis spectroscopy

Table S9. Binding constants of **CuL** and **CuL₂** complexes in the solvent mixture 1:1 $CH_3OH:CH_2Cl_2$ determined by HypSpec2014. Cu(CF₃SO₃)₂ was used as the metal salt.

	logβ(CuL)	logβ(CuL₂)
10c	3.53 ± 0.01	6.29 ± 0.01
11a	3.02 ± 0.02	5.25 ± 0.02
13a	3.45 ± 0.02	6.34 ± 0.01

Figure S30. UV-Vis titration of Cu(II) with ligand **10c**.

Figure S31. Curve fitting for the titration of Cu(II) with ligand **10c**.

Figure S32. Species distribution for the titration of Cu(II) with ligand **10c**.

Figure S33. UV-Vis titration of Cu(II) with ligand **11a**.

Figure S34. Curve fitting for the titration of Cu(II) with ligand **11a**.

Figure S35. Species distribution for the titration of Cu(II) with ligand **11a**.

Figure S36. UV-Vis titration of Cu(II) with ligand 13a.

Figure S37. Curve fitting for the titration of Cu(II) with ligand **13a**.

Figure S38. Species distribution for the titration of Cu(II) with ligand **13a**.

Figure S39. CD spectra of Cu(II) with 1, 2 and 3 added equivalents of ligand **13a** in a 1:1 $CH_3OH:CH_2Cl_2$ solvent mixture. The CD spectra were smoothed using the Savitzky-Golay method with 300 points of window and polynomial order 2. The observed CD signals are weak, however, the peak at 650 nm indicates transfer of chirality to the metal centre. Recording the spectra in higher concentrations was not possible due to limited solubility of the complex.

DFT calculations

		enguisa	anu angi		alculateu	211(11) 001	ilpiexes.
		M-	M-	M-	N31-		
		N31	N32	N2	M-32	N2-M-	
Complex	Isomer	M-	M-	M-	N31 ⁱ -M-	N2 ⁱ	Coordination Geometry,

RMSD / Å

Table S10 Selected bond lengths and angles for calculated 7n(II) complexes

		N31 ⁱ	N32 ⁱ	N2 ⁱ	N32 ⁱ	(°)	RMSD / Å
		(Å)	(Å)	(Å)	(°)		
	I	1	I	1	I	1	
$[7n/14n]_{1}^{12+}$		2.164	2.176	2.394	104.60	115 10	Octahedron (distorted)
[ZII(14 d)2]	cis-juc	2.164	2.189	2.357	104.29	115.19	0.638
							Pentagonal bipyramid
	mor	2.207	2.212	2.272	150.89	165.89	with a vacancy
	mer	2.205	2.219	2.289	150.00		(equatorial) (distorted)
							0.667
	trans-	2.197	2.260	2.282	96.18	105.00	Octahedron (distorted)
	fac	2.197	2.261	2.282	96.23	165.00	0.561
$[7n(14h)]^{2+}$	cis-fac	2.147	2.168	2.603	95.89	109.98	Octahedron (distorted)
[Zn(140)2] ^{-*}		2.159	2.208	2.441	93.76		0.571
	mor	2.194	2.224	2.316	151.60	167.73	Octahedron (distorted)
	mer	2.193	2.222	2.320	151.45		0.649
							Pentagonal bipyramid
	trans-	2.202	2.224	2.425	94.83	157 25	with a vacancy
	fac	2.202	2.224	2.425	94.84	157.35	(equatorial) (distorted)
							0.663
$[7n(14n)]^{12+}$	cis-fac	2.136	2.128	2.614	94.20	107.99	Octahedron (distorted)
[ZII(14C) 2] ^{-*}		2.142	2.140	2.613	94.07		0.555
	mer	2.140	2.155	2.679	137.51	168.99	Irregular (n/a)

		2.131	2.156	2.891	129.93		
							Pentagonal bipyramid
	trans-	2.207	2.185	2.467	93.49	152.77	with a vacancy
	fac	2.214	2.186	2.465	94.10		(equatorial) (distorted)
							0.671
[7n/14d) 12+	cis-fac	2.101	2.154	3.136	103.02	119.61	Tetrahedron (distorted)
[Zn(140)2] ^{-*}		2.132	2.142	3.156	96.94		0.586
	mer	2.158	2.140	2.876	132.42	163.29	Tetrahedron (distorted)
		2.158	2.140	2.876	132.43		0.776
	trans-	2.141	2.187	2.877	97.85	150.60	Irregular (n/a)
	fac	2.165	2.181	2.570	91.00	130.00	

ⁱ symmetry related atom

* For FindGeo analysis of calculated complexes, one donor N was changed to O in the input

file, due to a bug in the program

Threshold coordination distance was set to 2.8 Å (default).

Table S11. Selected bond lengths and angles for calculated Cu(II) complexes.

	Isomer	M-	M-	M-	N31-			
		N31	N32	N2	M-32	N2-M- N2 ⁱ		
Complex		M-	M-	M-	N31 ⁱ -M-		Coordination Geometry,	
		N31 ⁱ	N32 ⁱ	N2 ⁱ	N32 ⁱ	(°)	RMSD / Å	
		(Å)	(Å)	(Å)	(°)			
		2 064	2 067	2 494	96.44		Octahedron (distorted)	
[Cu(14a) ₂] ²⁺	cis-fac	2.004	2.007	2.454	104 59	113.36	0 544	
		2.041	2.255	2.104	104.55		0.544	
	mer	2.351	2.325	2.116	155.40	170.87	Octahedron (distorted)	
		2.084	2.096	2.097	160.08	170.07	0.508	
	trans-	2.070	2.093	2.405	93.85	100.15	Octahedron (distorted)	
	fac	2.070	2.092	2.406	93.79	168.15	0.526	
$[C_{1}(a,ab), 1^{2}]$		2.239	2.050	2.207	96.06	111.22	Octahedron (distorted)	
[Cu(14b) ₂] ² '	cis-fac	2.050	2.053	2.760	90.39		0.526	
		2.092	2.070	2.436	151.00	170.00	Octahedron (distorted)	
	mer	2.092	2.070	2.437	151.00	170.82	0.648	
							Pentagonal bipyramid	
	trans-	2.075	2.056	2.621	92.82	157.07	with a vacancy	
	fac	2.076	2.056	2.624	92.83		(equatorial) (distorted)	
							0.676	
		2.029	2.047	2.724	89.90	105.57	Octahedron (distorted)	
[Cu(14c) ₂] ²⁺	cis-fac	2.022	2.204	2.278	97.77		0.500	
		2.060	2.034	2.523	149.65	168.90	Octahedron (distorted)	
	mer	2.060	2.034	2.522	149.70		0.679	

							Pentagonal bipyramid
	trans-	2.058	2.051	2.670	91.60	156.90	with a vacancy
	fac	2.071	2.042	2.561	92.10		(equatorial) (distorted)
							0.638
$[C_{11}(2,2,d), 1^{2+}]$	oic fac	2.123	2.145	3.059	99.71	121.27	Tetrahedron (distorted)
[Cu(14u) ₂] ²	cis-jac	2.121	2.187	3.188	95.82		0.568
		2.141	2.147	3.289	123.30	167.15	Tetrahedron (regular)
	mer	2.121	2.122	3.200	125.81		0.399
	trans-	2.043	2.063	3.066	91.85	173.68	Square plane (regular)
	fac	2.037	2.083	3.206	90.48		0.115

ⁱ symmetry related atom

* For FindGeo analysis of calculated complexes, one donor N was changed to O in the input file, due to a bug in the program

If not noted otherwise, the threshold coordination distance was set to 2.8 Å

Complex	denticity	Cu- N1_1 (Å)	Cu- N1_2 (Å)	Cu-Xª (Å)	N1_1- Cu-N1_2 (°)	X-Cu- Xª (°)	Coordination Geometry, RMSD / Å
[Cu(8a) ₂] ²⁺	3	2.056 2.056	2.059 2.059	2.404 2.404	85.89 85.89	180.00	Octahedron (regular) 0.088
[Cu(8a) ₂] ²⁺	2	2.058 2.058	2.062 2.062	2.316 2.316	84.92 84.93	180.00	Octahedron (regular) 0.159
[Cu(8d) ₂] ²⁺	3	2.057 2.057	2.058 2.058	2.399 2.401	85.76 85.91	179.38	Octahedron (regular) 0.091
[Cu(8d) ₂] ²⁺	2	2.056 2.056	2.067 2.067	2.339 2.339	85.38 85.38	180.00	Octahedron (regular) 0.165

Table S12. Selected bond lengths and angles for calculated Cu(II) complexes.

 $^{a}X = N3$ in tridentate ligands and X = O1 in bidentate ligands.

Calculated UV-Vis spectra

UV-Vis spectra were calculated for all three isomers of complex $[Cu(14d)_2]^{2+}$. The results show that the spectra are similar for *mer* and *cis-fac* complexes, showing two peaks, while the *trans-fac* isomer showed a significantly different spectrum, showing one peak due to the higher symmetry of the *trans-fac* isomer.³

The calculated spectra could not be directly compared to the experimental spectra (UV-Vis titration of Cu(II) with **10c**, FigureS30), as the experimental spectra show a mixture of complexes of **ML** and **ML**₂ stoichiometry (Figure S32). However, at 3 equiv of added ligand, where the composition of the solution was found to be 2% free Cu, 30% **ML** and 68% **ML**₂, the absorption maximum at 647 nm was closest to the value calculated for the *trans-fac* isomer (645 nm).

Table S13. Calculated UV-Vis spectra for different isomers of complex [Cu(14d)₂]²⁺.

NMR spectra of compounds 1 and 7

Figure S41. ¹³C NMR (DMSO) spectrum of **1**.

Figure S42. ¹H NMR (DMSO) spectrum of **6**.

Figure S43. ¹³C NMR (DMSO) spectrum of **6**.

Figure S45. ¹³C NMR (DMSO) spectrum of **7**.

NMR spectra of ligands 8a-13a

Figure S46. ¹H NMR (DMSO) spectrum of **8a**.

Figure S47. ¹³C NMR (DMSO) spectrum of **8a**.

Figure S48. ¹H NMR (DMSO) spectrum of **8b**.

Figure S49. ¹³C NMR (DMSO) spectrum of **8b**.

Figure S50. ¹H NMR (DMSO) spectrum of **8c**.

Figure S51. ¹³C NMR (DMSO) spectrum of **8c**.

Figure S52. $^{1}H^{-1}H$ COSY (CD₃CN) spectrum of **8c.**

Figure S53. ¹H-¹H NOESY (CD₃CN) spectrum of **8c.**

Figure S54. ¹H NMR (DMSO) spectrum of **8d**.

Figure S55. ¹³C NMR (DMSO) spectrum of **8d**.

Figure S56. ¹H-¹H COSY (CD₃CN) spectrum of **8d.**

Figure S57. $^{1}H^{-1}H$ NOESY (CD₃CN) spectrum of **8d.**

Figure S59. ¹³C NMR (DMSO) spectrum of **9a**.

Figure S61. ¹³C NMR (DMSO) spectrum of **9b**.

Figure S63. ¹³C NMR (DMSO) spectrum of **9c**.

Figure S65. ¹³C NMR (DMSO) spectrum of **9d**.

Figure S67. ¹³C NMR (DMSO) spectrum of **10a**.

Figure S69. ¹³C NMR (DMSO) spectrum of **10b**.

Figure S71. ¹³C NMR (DMSO) spectrum of **10c**.

Figure S73. ¹³C NMR (DMSO) spectrum of **10d**.

Figure S75. ¹³C NMR (DMSO) spectrum of **11a**.

Figure S76. ¹H NMR (DMSO) spectrum of **12a**.

Figure S77. ¹³C NMR (CD₃CN) spectrum of **12a**.

Figure S78. ¹H NMR (CDCl₃) spectrum of **13a**.

Figure S79. ¹³C NMR (CDCl₃) spectrum of **13a**.

 1 H, 13 C and 2D NMR spectra of in situ prepared complex of **9c** and Zn(BF₄)₂ in a 2:1 ratio.

Figure S80. ¹H NMR (CD₃OD) spectrum of in situ prepared complex of **9c** and Zn(BF₄)₂ in a 2:1 ratio.

Figure S81. ¹³C NMR (CD₃OD) spectrum of in situ prepared complex of **9c** and Zn(BF₄)₂ in a 2:1 ratio.

Figure S82. ¹H-¹H COSY (CD₃OD) spectrum of in situ prepared complex of **9c** and $Zn(BF_4)_2$ in a 2:1 ratio.

Figure S83. ${}^{1}H{}^{-13}C$ HSQC (CD₃OD) spectrum of in situ prepared complex of **9c** and Zn(BF₄)₂ in a 2:1 ratio.

Figure S84. ¹H-¹³C HMBC (CD₃OD) spectrum of in situ prepared complex of **9c** and $Zn(BF_4)_2$ in a 2:1 ratio.

Figure S85. ¹H-¹H NOESY (CD₃OD) spectrum of in situ prepared complex of **9c** and Zn(BF₄)₂ in a 2:1 ratio.

IR spectra of ligands 8a-13a.

Figure S86. IR(KBr) spectrum of 8a.

Figure S87. IR(KBr) spectrum of **8b**.

Figure S88. IR(KBr) spectrum of 8c.

Figure S89. IR(KBr) spectrum of 8d.

Figure S90. IR(KBr) spectrum of 9a.

Figure S91. IR(KBr) spectrum of **9b**.

Figure S92. IR(KBr) spectrum of **9c**.

Figure S93. IR(KBr) spectrum of **9d**.

Figure S94. IR(KBr) spectrum of **10a**.

Figure S95. IR(KBr) spectrum of **10b**.

Figure S96. IR(KBr) spectrum of **10c**.

Figure S97. IR(KBr) spectrum of **10d**.

Figure S98. IR(KBr) spectrum of **11a**.

Figure S99. IR(KBr) spectrum of **12a**.

Figure S100. IR(KBr) spectrum of 13a.

IR spectra of metal complexes

Figure S101. IR(KBr) spectrum of 8acu.

Figure S102. IR(KBr) spectrum of 8dcu.

Figure S103. IR(KBr) spectrum of **9c**_{cu}.

Figure S104. IR(KBr) spectrum of **10c**_{cu}.

IR (KBr) spectra of the complexes were compared to the IR spectra of the ligands, and shifts of several peaks were observed upon complexation. The alkene C-H stretching (3100-3000 cm⁻¹) peaks were shifted to higher wavenumbers in the complexes, and the larger O-H water peak in **8a**_{cu} and **8d**_{cu} possibly overlapped the C-H peaks in the complexes. Peaks between 1400 and 1700 cm⁻¹ were assigned to the C=C and C=N bonds; some of them belonging to the triazole groups.⁴ Significant shifts in these peaks were observed for all complexes except **9c**_{cu}, where a broad band appeared at 1063 cm⁻¹. This band (but in somewhat lower intensity) was also observed for **8a**_{cu} and **8d**_{cu} but not for **10c**_{cu}.

Figure S105. IR spectra of ligand 8a and complex 8acu.

Figure S106. IR spectra of ligand 8d and complex 8dcu.

Figure S107. IR spectra of ligand **9c** and complex **9c**_{cu}.

Figure S108. IR spectra of ligand **10c** and complex **10c**_{cu}.

References

- 1 L. Farrugia, J. Appl. Crystallogr., 2012, **45**, 849–854.
- 2 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466–470.
- 3 V. Rodríguez, J. M. Gutiérrez-Zorrilla, P. Vitoria, A. Luque, P. Román and M. Martínez-Ripoll, *Inorg. Chim. Acta*, 1999, **290**, 57–63.
- 4 X. You and Z. Wei, *Transit. Met. Chem.*, 2014, **39**, 675–680.