Supporting information

Photochemical deposition of amorphous MoS_x on one-dimensional NaNbO₃-CdS

heterojunction photocatalyst for highly efficient visible-light-driven hydrogen

evolution

Jiawei Zhu^a, Jingjing Xu^{a, b}*, Xiaoyu Du, Qiuhong Li, Yihang Fu, Mindong Chen^a

^a Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing, 210044, China

b Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China

Fig. S1 Nitrogen adsorption–desorption isotherms of NaNbO₃, CdS and MoS_x-CN-100. Inset: The BET surface area of NaNbO₃, CdS and MoS_x-CN-100.

^{*} Corresponding author. Tel./fax: +86 25 58731090

E-mail address: xujj@seu.edu.cn, xujj@nuist.edu.cn (JingJing Xu)

No.	photocatalysts	Light sourceSacrificial(Wavelength)solution	H_2	Pof	
			solution	mmol/h/g	ICT.
1	MoS _x -NaNbO ₃ -CdS	Xe lamp 300W(>400 nm)	Lactic acid	2.386	This
					work
2	CdS/Ni-MOF	Xe lamp 300W (>420nm)	Lactic acid	2.508	1
3	CdS/Zn2GeO4	Xe lamp 300W (>420nm)	Na ₂ SO ₃ &Na ₂ S	1.72	2
4	CdS/MoS ₂	Xe lamp 300W (>420nm)	Lactic acid	1.4	3
5	g-C ₃ N ₄ /Au/CdS	Xe lamp 300W (>420nm)	Lactic acid	1.1	4
6	Pt-rGO-NaNbO ₃	Xe lamp 300W (>420nm)	Methanol	2.342	5
7	Pt-NaNbO ₃	Xe lamp 300W	Methanol	0.266	6
8	Ca-NaNbO ₃ -C ₃ N ₄	Solar irradiation (~900W/m ²)	Methanol	2.95	7
9	NaNbO ₃ -Pt	Xe lamp 400W (>300nm)	Lactic acid	1.12	8

Table S1. A comparison of the hydrogen evolution performance between our MoS_x -CN and CdS, NaNbO₃ based photocatalysts

Reference

- [1] Guo J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., Cui, W., Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H₂ evolution, Applied Surface Science. 2020. 146356.
- [2] Hou Z., Zou, X., Song, X., Pu, X., Geng, Y., Wang, L., Fabrication of CdS/Zn₂GeO₄ heterojunction with enhanced visible-light photocatalytic H₂ evolution activity, International Journal of Hydrogen Energy. 2019, 44(54), 28649-28655.
- [3] Liu Y., Niu, H., Gu, W., Cai, X., Mao, B., Li, D., Shi, W., In-situ construction of hierarchical CdS/MoS₂ microboxes for enhanced visible-light photocatalytic H₂ production, Chemical Engineering Journal. 2018, 339, 117-124.
- [4] Li W., Feng, C., Dai, S., Yue, J., Hua, F., Hou, H., Fabrication of sulfur-doped g-C₃N₄/Au/CdS
 Z-scheme photocatalyst to improve the photocatalytic performance under visible light, Applied Catalysis B: Environmental. 2015, 168-169, 465-471.
- [5] Yang F., Zhang, Q., Zhang, L., Cao, M., Liu, Q., Dai, W.-L., Facile synthesis of highly efficient Pt/N-rGO/N-NaNbO₃ nanorods toward photocatalytic hydrogen production, Applied Catalysis B: Environmental. 2019, 257, 117901.
- [6] Liu Q., Chai, Y., Zhang, L., Ren, J., Dai, W.-L., Highly efficient Pt/NaNbO3 nanowire

photocatalyst: Its morphology effect and application in water purification and H2 production, Applied Catalysis B: Environmental. 2017, 205, 505-513.

- [7] Singh Vig A., Rani, N., Gupta, A., Pandey, O. P., Influence of Ca-doped NaNbO₃ and its heterojunction with g-C3N4 on the photoredox performance, Solar Energy. 2019, 185, 469-479.
- [8] Zhang D., Cheng, J., Shi, F., Cheng, Z., Yang, X., Cao, M., Low-temperature synthesis of ribbon-like orthorhombic NaNbO₃ fibers and their photocatalytic activities for H₂ evolution, RSC Advances. 2015, 5(42), 33001-33007.