Decoupling nucleation with crystal-growth for the syntheses of nanocrystalline zeolites

Guanqun Zhang [†]^a, Yaqi Fan [†]^a, Ju Huang ^a, Lijin Wang ^a, Haiming Liu ^a, Chengguang Yang ^b, Meng Lyu ^b, Yanhang Ma ^{a,c*}

^a School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
^b CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced
Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.

^c Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China

FIGURES AND TABLES

Figure S1. SEM images of N-Silicalite-1 zeolite, white scale bar is 100 nm.

Figure S2. SEM images of N-Silicalite-1 prepared from the gel composition of 0.15TPAOH: 1.0SiO₂: xH₂O and after direct crystallization. The H₂O/Si ratio is (a) 25, (b) 10, (C) 3 and (d) 1 for each sample, white scale bar is 100 nm.

Figure S3. Powder XRD patterns of Silicalite-1 aged at 80oC for 48 h with different H2O contents in the media.

Figure S4. (a) SEM images and (b) crystal size distribution of Silicalite-1 prepared from different H_2O/Si ratios and aging temperatures. All samples were then subject to crystallization at 150 °C for 4h. Data of each graph acquired by counting 100 zeolite particles from SEM images.

Figure S5. SEM image of N-Silicalite-1 (a) after crystallization at 170 °C and (b) after crystallization at 150 °C for 24h, white scale bar is 100 nm.

Figure S6. Powder XRD profiles of N-ZSM-5 zeolites in comparison with C-ZSM-5 zeolites.

Figure S7. SEM images of (a) C-ZSM-5 $_{\rm 200}$ and (b) C-ZSM-5 $_{\rm 100}$, white scale bar is 100 nm.

Figure S8. N₂ ad/desorption isotherm of (a) N-ZSM-5₂₀₀, C-ZSM-5₂₀₀ and (b) N-ZSM-5₁₀₀, C-ZSM-5₁₀₀. The isotherm plots are vertically shifted by 120 cm³/g from each other to avoid overlapping.

Figure S9. SEM images of (a) N-ZSM-5₂₀₀ and (b) N-ZSM-5₁₀₀ prepared with a H₂O/Si=2 in the HG system, white scale bar

is 100 nm.

Figure S10. ²⁷AI MAS NMR spectra of (a) as-synthesized and (b) calcined N-ZSM-5 zeolites.

Figure S11. TEM images of (a) N-Beta₂₀₀, N-Beta₁₀₀, (c) N-Beta₅₀ and (d) N-Beta₂₅.

Figure S12. SEM images of (a) C-Beta₂₀₀, (b) C-Beta₁₀₀, (c) C-Beta₅₀ and (d) C-Beta₂₅ zeolites, white scale bar is 100 nm. Insets are the size distributions by counting 150 particles.

Figure S13. N₂ ad/desorption isotherm of (a) N-Beta and (b) C-Beta zeolites. Isotherm plots are vertically shifted one-byone by 150 cm³/g in (a) and 170 cm³/g in (b) from each other to avoid overlapping.

Figure S14. SEM images of N-Beta₅₀ prepared from direct crystallization, white scale bar is 100 nm.

Figure S15. Powder XRD of C-Beta_{50} and N-Beta_{50} after aging for 48 h and crystallized for 24 h.

Figure S16. ²⁷Al MAS NMR spectra of calcined N-Beta zeolites.

Figure S17. Power XRD patterns of regenerated N-ZSM-5 zeolites.

Figure S18. Methanol conversion over N-ZSM-5 and C-ZSM-5 zeolites. Experimental conditions: T = 470 °C, 1 atm, WHSV = 5 h^{-1} , catalyst weight = 100 mg.