Supplementary material

Dysprosium-based complexes with a flat pentadentate donor: a magnetic and

ab initio study

Matilde Fondo,^{§,*} Julio Corredoira-Vázquez,[§] Ana M. García-Deibe,[§] Silvia Gómez-Coca,[£] Eliseo Ruiz,[£] and Jesús Sanmartín-Matalobos[§]

[§] Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de

Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.

[£] Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain

SCHEMES AND FIGURES

Scheme S1. Proposed mechanism for the formation of hemiacetal from imine functional group

Scheme S2. Related ligands of H_2L in crystallographically solved complexes.¹⁴⁻²¹ (references in the article)

Scheme S3. Coordination modes shown by H₂L and the ligands of Scheme S2 in metal complexes.

Fig. S1. Coordination environments for the Dy^{III} ions in **1** (left) and **2** (right) showing the distorted spherical tricapped trigonal prism and spherical capped square antiprism structures.

Fig. S2. Distorted triangular dodecahedron coordination environment for Dy^{III} in **3a**.

Fig. S3. Crystal structure of 3, showing the hydrogen bond between 3a and 3b

Fig. S4. Ellipsoid (50% probability) diagram for the anion $[Dy_{0.09}Y_{0.91}(L)(NO_3)_2]^{-1}$ in **4.**

Fig. S5. Comparative powder X-ray diffractograms for $2.2H_2O$. Garnet: experimental diffractogram for the microcrystalline sample; red: calculated diffractogram using the data obtained from single X-ray diffraction studies.

Fig. S6. Comparative powder X-ray diffractograms for **3**: green and red: experimental diffractograms for two microcrystalline samples obtained from two different syntheses; grey: calculated diffractogram using the data obtained from single X-ray diffraction studies.

Fig. S7. Comparative powder X-ray diffractograms for **4**. Orange: experimental diffractogram for the microcrystalline sample; blue: calculated diffractogram using the data obtained from single X-ray diffraction studies.

Fig. S8. $\chi_M T vs T$ for **2**·H₂O. Inset: $M/N\mu_B vs H$.

Fig. S9. $\chi_M T$ vs T for **3**. Inset: $M/N\mu_B$ vs H.

Fig. S10. Temperature, field and frequency dependence of $\chi_{\text{M}}{}^{\prime\prime}$ for 1·H_2O

Fig. S11. a) Frequency dependence of χ_{M} " for 2·2H₂O at 5 K in various applied fields. b) Cole-Cole plot for 2·2H₂O at 5 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model. c) Field dependence of the magnetic relaxation time at 5.0 K for 2·2H₂O.

Fig. S12. a) Frequency dependence of χ_{M} " for **3** at 3 K in various applied fields. b) Cole-Cole plot for **3** at 3 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model. c) Field dependence of the magnetic relaxation time at 3.0 K for **3**.

Fig. S13. Temperature dependence of χ'_{M} for: left) **2**·2H₂O in H_{dc} = 1500 Oe at different frequencies; right) **3** in H_{dc} = 3000 Oe at different frequencies.

Fig. S14. Cole–Cole plot for $2 \cdot 2H_2O$ in $H_{dc} = 1500$ Oe.

Fig. S15. Cole–Cole plot for **3** in H_{dc} = 3000 Oe.

Fig. S16. Temperature dependence of χ'_{M} for **4** at different frequencies: left) in zero dc field; right) in H_{dc} = 1500 Oe.

Fig. S17. Temperature dependence of χ''_{M} for 4 in a dc zero field at different frequencies.

Fig. S18. Cole–Cole plot for 4 in: left) H_{dc} = 0 Oe; right) H_{dc} = 1500 Oe

Fig. S19. Arrhenius plot for **4** in a zero dc applied field. The violet line accounts for the best fit considering Orbach plus QTM relaxation (eq. 1 in the article).

Fig. S20. Comparison between experimental (open circles) and calculated at CASSCF level (red lines) variable temperature dc magnetic susceptibility and magnetization curves for **1** using the model structure for the calculation without including the pyridine molecule (**1wo**).

Fig. S21. Comparison between experimental (open circles) and calculated at CASSCF level (red lines) variable temperature dc magnetic susceptibility and magnetization curves for **2**.

Figure S22. Isosurface of the CASSCF beta electron density of **1w**, **1wo** and **2** calculated as the difference between the total density and the sum of the spin density of the seven alpha active electrons for the ground (above), first excited (middle) and second excited (below) states.

Figure S23. Isosurface of the CASSCF beta electron density of **3a**, **3b** and **4** calculated as the difference between the total density and the sum of the spin density of the seven alpha active electrons for the ground (above), first excited (middle) and second excited (below) states.

TABLES

Table S1. Crystal data and structure refinement for $[Dy(HL)(NO_3)_2] \cdot 1.15Py \cdot 0.3CH_3C_6H_5$ (**1** $\cdot 1.15Py \cdot 0.3CH_3C_6H_5$), $[Dy(L)(NO_3)(H_2O)(EtOH)] \cdot 2H_2O$ (**2** $\cdot 2H_2O$), $[Dy(L')_2)][Dy(L)(Cl_2)]$ (**3**) and $Et_3NH[Dy_{0.1}Y_{0.9}(L)(NO_3)_2]$ (**4**).

	$1 \cdot 1.15 Py \cdot 0.3 CH_3 C_6 H_5$	2 ·2H ₂ O	3	4
Formula	C _{26.85} H _{21.15} DyN _{6.15} O ₈	$C_{21}H_{25}DyN_4O_9$	$C_{47}H_{39}CI_2Dy_2N_7O_8$	$C_{25}H_{29}Dy_{0.09}N_6O_8Y_{0.91}$
Molecular weight	721.46	639.95	1225.75	637.44
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1	P2 ₁ /n	C2/c	<i>P</i> 2 ₁ /n
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal size (mm ³)	0.180 x 0.040 x 0.020	0.190 x 0.140 x 0.080	0.150 x 0.084 x 0.040	0.080 x 0.060 x 0.020
Color, shape	Red, plate	Red, plate	Red, plate	Orange, prism
Т (К)	100(2)	100(2)	100(2)	100(2)
<i>a</i> (Å)	9.8073(10)	13.9344(8)	19.188(4)	10.3588(6)
b (Å)	10.4055(12)	8.2685(5)	18.419(4)	14.8159(10
<i>c</i> (Å)	13.9823(15)	20.4164(11)	12.866(3)	17.2043(11)
α (°)	86.328(4)	90	90	90
β(°)	82.101(4)	100.009(2)	102.517(7)	94.679(3)
γ (°)	74.962(4)	90	90	90
Volume (ų)	1364.4(3)	2316.5(2)	4439.2(16)	2631.6(3)
Ζ	2	4	4	4
Absor. coef. (mm ⁻¹)	2.800	3.286	3.525	2.337
Reflections collected	74232	179276	13352	61528
Independent reflections	6798 [<i>R</i> _{int} = 0. 0501]	$7050[R_{int} = 0.0367]$	6438 [<i>R</i> _{int} = 0.0843]	6517 [<i>R</i> _{int} = 0.1012]
Data / restraints / param.	6798 / 127 / 423	7050 / 6 / 343	6438 / 24 / 289	6517 / 0 / 369
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0224$	$R_1 = 0.0216$	<i>R</i> ₁ = 0.0765	$R_1 = 0.0335$
	$wR_2 = 0.0462$	$wR_2 = 0.0535$	$wR_2 = 0.1940$	$wR_2 = 0.0602$
R indices (all data)	$R_1 = 0.0277$	$R_1 = 0.0221$	$R_1 = 0.1125$	$R_1 = 0.0581$
	$wR_2 = 0.0486$	$wR_2 = 0.0537$	$wR_2 = 0.2135$	$wR_2 = 0.0681$

Table S2. Results of a search in CSD, for crystal structures of Dy^{III} complexes contaning ligands with neutral phenol O atoms acting as donors, also including distances for equivalent coordinate phenolate groups, when available.

Journal and the reference	C-O _{phenol}	Dy-O _{phenol}	C-O _{phenolate}	Dy-O _{phenolate}
Dalton Trans. 10.1039/C9DT03253C	1.302	2.224		
RSC Advances 10.1039/c6ra16669e	1.299	2.282		
	1.308	2.328		
Dalton Trans. 10.1039/C6DT04027F	1.368	2.646	1.309	2.143
	1.385	2.637	1.322	2.170
CSD Communication CCDC 809223	1.357	2.668	1.321	2.268
J. Coord. Chem.	1.275-	2.264-		
10.1080/00958972.2012.744002	1.305	2.295		
Dalton Trans. 10.1039/c2dt31023f	1.279-	2.311-		
	1.308	2.357		
Dalton Trans. 10.1039/a606626g	1.268-	2.254-		
	1.295	2.321		
Inorg. Chim. Acta	1.346	2.266		
10.1016/j.ica.2017.08.060				
Inorg. Chem. Commun.	1.374-	2.400-		
10.1016/j.inoche.2014.12.019	1.378	2.438		
Dalton Trans. 10.1039/c2dt11539e	1.279	2.252		
Eur. J. Inorg. Chem.	1.297	2.309		
10.1002/ejic.201201336				
Dalton Trans. 10.1039/C5DT02563J	1.386-	2.477-		
	1.401	2.481		
This work	1.354	2.366	1.325	2.239

Table S3. Main bond distances (Å) and angles for $1 \cdot 1.15 Py \cdot 0.3 CH_3 C_6 H_5$ and $2 \cdot 2 H_2 O$.

	$1 \cdot 1.15 Py \cdot 0.3 CH_3 C_6 H_5$	2 ·2H₂O
Dy1-01	2.2391(16)	2.2689(17)
Dy1-02	2.3663(16)	2.2869(17)
Dy1-N2	2.4872(19)	2.503(2)
Dy1-N1	2.4713(19)	2.529(2)
Dy1-N3	2.4971(19)	2.538(2)
Dy1-011	2.4445(17)	2.5201(19)
Dy1-012	2.4570(18)	2.5691(19)
Dy1-021	2.4576(18)	
Dy-O1W		2.3723(18)
Dy1-022	2.4944(15)	
Dy-O1S		2.578(11)
011-Dy1-012		50.22(6)
021-Dy1-022	51.64(7)	
01-Dy1-N3	158.34(6)	160.12(6)

Table S4. SHAPE v2.1. Continuous Shape Measures calculation (c) 2013 Electronic Structure Group,Universitat de Barcelona

Geometries Coordination number 9

MFF-9	13 Cs Muffin
HH-9	12 C2v Hula-hoop
JTDIC-9	11 C3v Tridiminished icosahedron J63
TCTPR-9	10 D3h Spherical tricapped trigonal prism
JTCTPR-9	9 D3h Tricapped trigonal prism J51
CSAPR-9	8 C4v Spherical capped square antiprism
JCSAPR-9	7 C4v Capped square antiprism J10
CCU-9	6 C4v Spherical-relaxed capped cube
JCCU-9	5 C4v Capped cube J8
JTC-9	4 C3v Johnson triangular cupola J3
HBPY-9	3 D7h Heptagonal bipyramid
OPY-9	2 C8v Octagonal pyramid
EP-9	1 D9h Enneagon

Geometries Coordination number 8

TBPY-8	13 D3h Elongated trigonal bipyramid
TT-8	12 Td Triakis tetrahedron
JSD-8	11 D2d Snub diphenoid J84
BTPR-8	10 C2v Biaugmented trigonal prism
JBTPR-8	9 C2v Biaugmented trigonal prism J50
JETBPY-8	8 D3h Johnson elongated triangular bipyramid J14
JGBF-8	7 D2d Johnson gyrobifastigium J26
TDD-8	6 D2d Triangular dodecahedron
SAPR-8	5 D4d Square antiprism
CU-8	4 Oh Cube
HBPY-8	D6h Hexagonal bipyramid
HPY-8	2 C7v Heptagonal pyramid

OP-8 1 D8h Octagon

Geometries Coordination number 7

ETPY-7	7 C3v	Johnson elongated triangular pyramid J7
JPBPY-7	6 D5h	Johnson pentagonal bipyramid J13
CTPR-7	5 C2v	Capped trigonal prism
COC-7	4 C3v	Capped octahedron
PBPY-7	3 D5h	Pentagonal bipyramid
HPY-7	2 C6v	Hexagonal pyramid
HP-7	1 D7h	Heptagon

1.1.15Py.0.3CH₃C₆H₅

Structure [N	1L9]	MFF-9	HH-9	JTDIC-9	TCTPR-9	JTCTPR-9	CSAPR-9
		3.139 ,	8.701,	10.396,	2. 699,	4.195,	3.334,
JCSAPR-9	CCU-9	JCCU-9	JTC-9	HBPY-9	OPY-9	EP-9	
4.331,	4.782,	6.504,	16.000,	16.280,	21.730,	36.402	

2•2H₂O

Structure [N	ИL9]	MFF-9	HH-9	JTDIC-9	TCTPR-9	JTCTPR-9	CSAPR-9
		2.012,	8.895,	10.756,	2.863,	4.393,	1.909,
JCSAPR-9	CCU	-9 JCCU-	9 JTC-	9 HBPY	-9 OPY-9	EP-9	
2.680,	5.41	LO, 6.596	, 15.94	1, 15.99	98, 24.017,	36.365	

3

3a Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 JGBF-8 20.878, 10.340, **2.888**, 3.649, 3.760, 23.682 9.730 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 2.836, 4.306, 9.495, 12.407, 24.894, 32.855 3b Structure [ML7] JETPY-7 JPBPY-7 CTPR-7 COC-7 PBPY-7 HPY-7 HP-7 19.934, 6.452, 5.941, 8.093, **1.345**, 23.284, 33.054 4 Υ Structure [ML9] MFF-9 HH-9 JTDIC-9 TCTPR-9 JTCTPR-9 CSAPR-9 **2.734**, 9.476, 10.259, **2.290**, 3.873, 2.954, JCSAPR-9 CCU-9 JCCU-9 JTC-9 HBPY-9 OPY-9 EP-9 5.518, 7.256, 15.793, 16.574, 20.951, 36.788 3.832, Dy

 Structure [ML9]
 MFF-9
 HH-9
 JTDIC-9
 TCTPR-9
 JTCTPR-9
 CSAPR-9

 2.715
 9.535
 10.269
 2.308
 3.891
 2.973

 JCSAPR-9
 CCU-9
 JCCU-9
 JTC-9
 HBPY-9
 OPY-9
 EP-9

 3.981
 5.535
 7.276
 15.836
 16.589
 20.967
 36.799

3a	3	3	b
Dy1-011	2.219(9)	Dy2-021	2.286(9)
Dy1-012	2.408(10)	Dy2-Cl2	2.615(3)
Dy1-N11	2.452(11)	Dy2-N21	2.506(10)
Dy1-N12	2.488(10)	Dy2-N22	2.480(15)
O12-Dy1-N12	64.0(3)	N22-Dy2-N21	64.9(3)
011-Dy1-012	162.5(3)	Cl2-Dy2-Cl2 ^{#1}	176.74(16)
#1: -x+1,y,-z+3/2			

Table S5. Main bond distances (Å) and angles (°) for 3.

Table S6. Main bond distances (Å) and angles (º) for 4

		1 0 11	
Y1-O2	2.251(3)	Dy1-02	2.226(13)
Y1-01	2.288(3)	Dy1-01	2.322(13)
Y1-012	2.465(3)	Dy1-012	2.352(12)
Y1-011	2.470(3)	Dy1-011	2.384(12)
Y1-021	2.471(3)	Dy1-021	2.556(12)
Y1-022	2.442(3)	Dy1-022	2.558(12)
Y1-N1	2.479(3)	Dy1-N1	2.554(13)
Y1-N3	2.493(3)	Dy1-N3	2.418(13)
Y1-N2	2.507(3)	Dy1-N2	2.508(13)
02-Y1-N1	158.24(13)	01-Dy1-N3	161.2(6)
022-Y1-021	52.12(7)	O21-Dy1-O22	49.9(2)

Metal complex ^a	Charge/	Nuclearity	Ref. in the article
	Coordination mode ^b		
[Cd ₃ L(OAc) ₂ (dmf) ₂]	dianionic/ $N_3O_2 \mu_2$ -bridge	trinuclear	14
[ReL(PPh ₃) ₂]I	dianionic/ N ₃ O ₂ chelate	mononuclear	15
fac-[Re(CO) ₃ H ₂ L(Br)]	neutral/ N ₂ chelate	mononuclear	15
fac-[Re(CO) ₃ H ₂ L(Cl)]	neutral/ N ₂ chelate	mononuclear	16
[SnL(Bu ⁿ) ₂]	dianionic/ N ₃ O ₂ chelate	mononuclear	13
[SnL(Ph) ₂]	dianionic/ N ₃ O ₂ chelate	mononuclear	13
[Mn(H ₂ L)Cl ₂]	neutral/ N_3O_2 chelate	mononuclear	17
[Mn ₂ Ca(L) ₂ (OAc) ₂ (MeOH) ₂]	dianionic/ $N_3O_2 \mu_2$ -bridge	trinuclear	17
[Mn ₃ (L) ₂ (OAc) ₂ (MeOH) ₂]	dianionic/ $N_3O_2 \mu_2$ -bridge	trinuclear	17
[Zn ₂ (L)(OAc) ₂ (DMF)]	dianionic/ $N_3O_2 \mu_2$ -bridge	dinuclear	18
[Zn ₄ (5-Bu ^t L) ₂ (OAc) ₄]	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	18
[Zn(3-MeH ₂ L)(Cl) ₂]	neutral/ N ₂ O chelate	mononuclear	19
[Zn ₂ (5-MeL)(Cl) ₂ (MeOH) ₂]	dianionic/ $N_3O_2 \mu_2$ -bridge	dinuclear	19
[Mn(5-MeHL)(Cl)(MeOH)]	monoanionic/ N ₃ O ₂ chelate	mononuclear	20
[Sn(5-MeL)(Bu ⁿ) ₂]	dianionic/ N ₃ O ₂ chelate	mononuclear	13
$[Mn(H_2L^1)(NCS)_2]$	neutral/ N_3O_2 chelate	mononuclear	20
$[Cd_4(L^{Me})_2(OAc)_4]$	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	14,18
[Sn(L ^{Me})(Bu ⁿ) ₂]	dianionic/ N ₃ O ₂ chelate	mononuclear	13
[Sn(L ^{Me})(Me) ₂]	dianionic/ N ₃ O ₂ chelate	mononuclear	13
[Mn ₄ (L ^{Me}) ₂ (OAc) ₄]	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	21
$[Mn_4(L^{Me})_2(CF_3COO)_4]$	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	21
$[Zn_4(L^{Me})_2(OAc)_4]$	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	18
$[Zn_4(L^{Me})_2(OAc)(O_2CC_6H_5)_3]$	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	18
$[Zn_4(5-CIL^{Me})_2(OAc)_4]$	dianionic/ $N_3O_2 \mu_4$ -bridge	tetranuclear	18

Table S7. Meta	l complexes derived	from H ₂ L and related	ligands crystallogra	phically solved.
----------------	---------------------	-----------------------------------	----------------------	------------------

^a Complexes without solvates; ligands in Scheme S2 (except H₂L, Scheme 1); ^b coordination mode in Scheme S3

Compounds	<i>Т/</i> К	χ _S /(cm³mol⁻¹)	χ _T /(cm ³ mol ⁻¹)	τ/(10 ⁻⁴ s)	α
	4.00	2.01	2.92	10.64	0.18
	4.25	1.91	2.79	7.05	0.17
	4.50	1.85	2.67	5.36	0.12
	4.75	1.72	2.59	4.01	0.19
2 ·2H₂O	5.00	1.72	2.46	2.97	0.08
	5.25	1.66	2.37	2.35	0.07
	5.50	1.47	2.07	1.80	0.08
	5.75	1.55	2.21	1.31	0.06
	6.0	1.49	2.13	0.95	0.08
	3.5	1.39	4.70	5.01	0.39
	4.0	1.45	4.48	5.01	0.36
	4.5	1.51	4.21	4.88	0.31
	5.0	1.51	3.95	4.54	0.28
	5.5	1.50	3.69	4.09	0.24
	6.0	1.47	3.46	3.52	0.22
2	6.5	1.42	3.25	3.00	0.21
3	7.0	1.40	3.07	2.57	0.19
	7.5	1.36	2.90	2.11	0.18
	8.0	1.30	2.75	1.78	0.18
	8.5	1.30	2.61	1.44	0.17
	9.0	1.26	2.48	1.25	0.17
	9.5	1.25	2.37	1.04	0.16
	10	1.24	2.27	0.89	0.16
	3.75	0.13	0.30	1.79	0.40
	4.00	0.13	0.28	1.85	0.35
	4.25	0.14	0.27	1.84	0.27
	4.50	0.13	0.25	1.78	0.23
4	4.75	0.12	0.24	1.57	0.20
(H _{dc} =0 Oe)	5.00	0.12	0.23	1.40	0.14
	5.25	0.12	0.22	1.28	0.10
	5.50	0.11	0.21	1.11	0.09
	5.75	0.094	0.20	0.95	0.11
	6.00	0.084	0.19	0.79	0.12
	2.8	0.11	0.41	595	0.18
	3.0	0.11	0.37	358	0.13
	3.2	0.10	0.35	223	0.08
	3.4	0.094	0.33	138	0.09
	3.6	0.087	0.31	87.5	0.09
	3.8	0.082	0.29	55.3	0.09
	4.0	0.074	0.28	35.5	0.10
4	4.2	0.076	0.27	23.9	0.06
(H _{dc} =1500 Oe)	4.4	0.068	0.26	16.2	0.08
	4.6	0.066	0.25	11.4	0.09
	4.8	0.065	0.24	7.91	0.07
	5.	0.062	0.23	5.76	0.08
	5.2	0.056	0.22	4.10	0.09
	5.4	0.052	0.21	3.05	0.11
	5.6	0.047	0.20	2.23	0.11
	5.8	0.039	0.20	1.79	0.14

Table S8. Generalised Debye model fitting parameters for $2 \cdot 2H_2O-4$