Supporting Information

A dual-function all-inorganic intercluster salt comprised of the polycation ε -

$[Al_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+} and polyanion \alpha - [PMo_{10}V_2O_{40}]^{5-} for detoxifying sulfur mustard and a standard methods and the second standard methods are second as a standard method.$

soman

Jialin Yu^a, Qi Gao^a, Lijuan Zhang^{a*}, Yunshan Zhou^{a*}, Yuxu Zhong^{b*}, Jianbo Yin^a, Yuanyuan Zhou^a, Fangsheng Tao^a and Yong'an Wang

^aState Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^bToxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy

of Military Sciences PLA China, Beijing 100850, P. R. China

E-mail: zhouys@mail.buct.edu.cn.

Preparation of the solution containing ε -[Al₁₃O₄(OH)₂₄(H₂O)₁₂]^{7+[s1]}: AlCl₃·6H₂O (12 g) was dissolved in 200 mL deionized water to prepare 0.25 mol/L AlCl₃ solution. NaOH (4.5 g) was dissolved in 450 mL deionized water to prepare 0.25 mol/L NaOH solution. The NaOH solution was added dropwise and slowly (\ge 15 min) into the AlCl₃ solution at 80°C under stirring to obtain the clear solution containing ε -[Al₁₃O₄(OH)₂₄(H₂O)₁₂]^{7+(6.0 mmol/L)}, denoted as Al₁₃⁷⁺.

Preparation of crystalline sulfate of Al₁₃, viz., Na[Al₁₃O₄(OH)₂₄(H₂O)₁₂][SO₄]₄·xH₂O (denoted as Al₁₃-SO₄): A volume of 170 mL of the Al₁₃⁷⁺ solution from above was slowly added into 125 mL of 0.1 mol/L Na₂SO₄. The mixture was allowed to stand for one day to obtain large amount of precipitate, denoted as Al₁₃-SO₄. IR data (KBr, cm⁻¹): 1129 (w), 981 (w), 640 (m), 540 (s), 491 (w)^[s2].

Figure S1. Photographic image of Al₁₃-PMo₁₀V₂

Atom	Atom	Length/Å	Atom	Atom	Length/Å
M1	025	1.837(9)	Al1	01	1.938(8)
M1	O26	1.839(10)	Al1	02	1.856(7)
M1	027	1.627(9)	Al1	03	1.849(7)
M1	O28	1.979(9)	Al1	04	2.019(7)
M1	O36 ¹	1.946(9)	Al1	05	1.853(8)
M1	O631	2.375(12)	Al1	06	1.895(8)
M1	O65	2.456(12)	A12	03	1.855(7)
M2	O28	1.842(10)	A12	O3 ²	1.855(7)
M2	029	1.858(10)	A12	04	2.032(10)
M2	O30	1.625(8)	A12	07	1.969(11)
M2	O31	1.925(10)	A12	08	1.841(8)
M2	032	1.926(10)	A12	O8 ²	1.841(8)
M2	O631	2.413(11)	A13	O8 ²	1.870(8)
M2	O66 ¹	2.447(12)	A13	08	1.870(8)
M3	O25 ¹	1.946(9)	A13	09	1.982(12)
M3	O31	1.867(9)	A13	O10	1.847(8)
M3)	O33	1.619(8)	A13	O10 ²	1.847(8)
M3	O34	1.876(9)	A13	011	2.013(11)
M3)	O42 ¹	1.925(10)	Al4	O10	1.864(9)
M3	O65 ¹	2.455(12)	Al4	011	2.043(8)
M3	O66 ¹	2.400(12)	Al4	012	1.849(7)
M4	O64 ¹	2.335(13)	Al4	013	1.939(9)
M4	O64 ¹	2.335(13)	Al4	014	1.832(9)
M4	037A	2.045(17)	Al4	015	1.865(8)
M4	O40A	1.867(16)	A15	04	1.815(10)
M5	O63 ¹	2.500(12)	A15	011	1.806(11)

Table S1. the selected bond lengths. Al_{13} - $PM_{10}V_2$ (refer to the atom numbering schemes)

M5	O64 ¹	2.376(12)	A15	016	1.817(8)
M5	O64 ¹	2.376(12)	A15	O16 ²	1.817(8)
M5	O37A	2.005(18)	Al6	O14	1.866(9)
M5	O39A	1.845(17)	Al6	015	1.843(9)
M6	O64 ¹	2.408(12)	Al6	O16	2.068(9)
M6	O64 ¹	2.408(12)	Al6	017	1.914(9)
M6	O39A	1.841(18)	Al6	O18	1.865(10)
M6	O40A	1.784(17)	Al6	019	1.837(9)
P1	O63	1.542(12)	Al7	O16	2.035(9)
P1	O63 ¹	1.542(12)	Al7	018	1.852(10)
P1	O66	1.506(11)	Al7	O21	1.876(10)
P1	O66 ¹	1.506(12)	Al7	O22	1.872(9)
P1	O64	1.647(13)	Al7	O23	1.843(9)
P1	O64 ¹	1.647(12)	Al7	O24	1.943(11)
P1	O65	1.448(12)	A18	O5	1.841(8)
P1	O65 ¹	1.448(12)	Al8	O6	1.878(9)
Al8	O20	1.948(8)	Al8	016	1.997(8)
Al8	O21	1.852(9)	Al8	019	1.855(9)

Symmetry code: $^{1}-x, 1-y, 2-z; ^{2}+x, 3/2-y, +z$. M stands for Mo (s.o.f. 0.8) + V (s.o.f. 0.2) which share the same site.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O25	M1	O26	92.8(4)	014	Al4	015	77.7(4)
O25	M1	O28	158.9(4)	015	Al4	011	93.8(3)
O25	M1	O36 ¹	87.6(4)	015	Al4	013	92.5(4)
O25	M1	O631	97.0(4)	04	A15	016	109.0(3)
O25	M1	O65	65.5(4)	04	A15	O16 ²	109.0(3)
O26	M1	O28	88.3(4)	011	A15	04	108.4(5)

Table S2. Selected bond angles for $Al_{13}\mbox{-}PM_{10}V_2$ (refer to the atom numbering schemes).

O26	M1	O36 ¹	157.9(4)	011	A15	016	111.1(3)
O26	M1	O631	67.2(4)	011	A15	O16 ²	111.1(3)
O26	M1	065	93.0(5)	O16 ²	A15	016	108.1(6)
027	M1	025	101.5(5)	014	Al6	016	94.8(4)
027	M1	O26	101.4(5)	014	Al6	017	93.5(4)
027	M1	O28	98.9(5)	015	Al6	014	77.5(4)
027	M1	O36 ¹	100.1(5)	015	Al6	016	95.0(4)
027	M1	O631	158.8(5)	015	Al6	017	92.3(4)
027	M1	065	161.2(5)	015	Al6	O18	169.8(4)
O28	M1	O63 ¹	64.1(4)	017	Al6	016	169.9(4)
O28	M1	065	93.4(4)	O18	Al6	014	93.8(4)
O36 ¹	M1	O28	83.6(4)	018	Al6	016	80.3(4)
O36 ¹	M1	O63 ¹	90.8(4)	O18	Al6	017	93.5(4)
O36 ¹	M1	065	67.1(4)	019	Al6	O14	171.8(4)
O631	M1	065	39.6(4)	019	Al6	015	95.7(4)
O28	M2	029	90.9(5)	019	Al6	016	81.0(4)
O28	M2	031	160.3(4)	019	Al6	017	91.4(4)
O28	M2	032	88.5(4)	019	Al6	O18	92.5(4)
O28	M2	O631	65.0(4)	018	Al7	016	81.5(4)
029	M2	031	88.6(4)	O18	Al7	O21	93.4(5)
029	M2	032	157.0(5)	O18	Al7	022	170.8(5)
029	M2	O63 ¹	93.7(5)	O18	Al7	024	90.7(5)
O30	M2	O28	99.9(5)	O21	Al7	016	81.6(4)
O30	M2	029	100.4(5)	O21	Al7	O24	89.8(5)
O30	M2	031	99.6(5)	022	Al7	016	93.5(5)
O30	M2	032	102.4(5)	022	Al7	O21	93.6(4)
O30	M2	O631	159.6(4)	022	Al7	024	95.3(5)
031	M2	032	84.3(4)	023	Al7	016	95.2(5)
031	M2	O63 ¹	95.4(4)	023	Al7	018	94.3(5)

032	M2	O63 ¹	65.3(4)	023	Al7	021	171.1(5)
O25 ¹	M3	O651	64.2(4)	023	Al7	022	78.3(5)
031	M3	O25 ¹	158.2(5)	023	Al7	O24	94.6(5)
031	M3	O34	92.2(4)	O24	Al7	016	168.0(5)
031	M3	O42 ¹	87.5(4)	05	Al8	06	80.0(3)
031	M3	O651	95.3(4)	05	Al8	016	96.2(3)
033	M3	O25 ¹	100.8(4)	05	Al8	019	94.2(4)
033	M3	O31	100.7(5)	05	Al8	O20	89.6(4)
033	M3	O34	102.0(5)	05	Al8	O21	173.7(4)
033	M3	O42 ¹	100.1(5)	06	Al8	016	92.5(3)
033	M3	O651	161.6(5)	06	Al8	O20	92.8(4)
034	M3	O25 ¹	87.1(4)	019	Al8	06	172.0(4)
034	M3	O42 ¹	157.6(5)	019	Al8	016	82.5(4)
034	M3	O65 ¹	68.1(4)	019	Al8	O20	92.7(4)
O42 ¹	M3	O25 ¹	85.0(4)	O20	Al8	016	172.8(4)
O42 ¹	M3	O65 ¹	89.6(5)	O21	Al8	06	93.7(4)
034	M4	037	79.6(6)	O21	Al8	016	83.2(4)
034	M4	O40	167.0(6)	O21	Al8	019	91.9(4)
034	M4	O641	94.5(4)	O21	Al8	O20	91.5(4)
035	M4	O34	100.5(4)	01	Al1	04	172.9(4)
035	M4	O36	101.3(5)	02	All	01	91.3(3)
035	M4	037	112.6(7)	02	All	04	84.0(3)
035	M4	O40	90.0(6)	02	All	06	93.3(4)
035	M4	O641	157.1(5)	03	All	01	92.7(3)
036	M4	O34	88.1(4)	03	All	02	93.7(4)
O36	M4	037	145.5(7)	03	All	04	82.4(4)
036	M4	O40	97.5(6)	03	All	05	93.5(3)
O36	M4	O641	96.5(4)	03	All	06	170.4(4)
037	M4	O40	89.3(7)	05	All	01	90.4(3)

037	M4	O64 ¹	53.2(6)	05	Al1	02	172.5(4)
O40	M4	O641	73.2(6)	05	Al1	04	95.0(3)
O26	M5	039	90.4(6)	05	Al1	06	79.3(3)
O26	M5	O63 ¹	63.1(4)	06	Al1	01	93.6(3)
O26	M5	O64 ¹	96.4(4)	O6	All	04	91.9(4)
032	M5	O26	87.4(4)	O3 ²	Al2	03	94.7(5)
032	M5	039	167.8(6)	03	Al2	04	81.8(3)
032	M5	O631	64.5(4)	O3 ²	Al2	04	81.8(3)
032	M5	O641	97.5(4)	03	Al2	07	90.4(3)
037	M5	O26	148.4(7)	O3 ²	Al2	07	90.4(3)
037	M5	032	86.3(7)	07	Al2	04	168.5(5)
037	M5	039	89.3(7)	08	Al2	O3 ²	171.5(4)
037	M5	O63 ¹	86.3(8)	08	Al2	03	92.8(3)
037	M5	O64 ¹	53.9(7)	O8 ²	Al2	03	171.5(4)
O38	M5	O26	98.1(4)	O8 ²	Al2	O3 ²	92.8(3)
O38	M5	032	100.1(4)	O8 ²	Al2	04	95.3(3)
038	M5	037	113.5(7)	08	Al2	04	95.3(3)
038	M5	039	92.2(6)	O8 ²	Al2	07	93.5(4)
O38	M5	O631	154.9(4)	08	Al2	07	93.5(4)
O38	M5	O641	157.6(4)	08	Al2	O8 ²	79.5(5)
039	M5	O63 ¹	103.8(6)	08	Al3	O8 ²	78.0(5)
039	M5	O64 ¹	70.7(6)	O8 ²	Al3	09	92.7(4)
O64 ¹	M5	O631	47.3(4)	08	Al3	09	92.7(4)
O29 ¹	M6	039	163.8(6)	08	Al3	011	95.1(3)
O29 ¹	M6	O40	89.4(6)	O8 ²	Al3	011	95.1(3)
O29 ¹	M6	O64 ¹	92.9(5)	09	Al3	011	169.9(5)
039	M6	O40	81.4(7)	O10	Al3	O8 ²	172.0(4)
039	M6	O641	71.5(6)	O10	Al3	08	94.3(3)
O40	M6	O64 ¹	70.1(6)	O10 ²	Al3	08	171.9(4)

O41	M6	O29 ¹	100.8(4)	O10 ²	Al3	O8 ²	94.3(3)
O41	M6	039	92.6(6)	O10 ²	Al3	09	89.8(4)
O41	M6	O40	90.4(6)	O10	Al3	09	89.8(4)
O41	M6	042	102.2(4)	O10	Al3	O10 ²	93.4(5)
O41	M6	O64 ¹	156.1(4)	O10	Al3	011	83.3(4)
O42	M6	O291	87.0(5)	O10 ²	Al3	011	83.3(4)
O42	M6	039	99.2(6)	O10	Al4	011	82.1(4)
042	M6	O40	167.4(6)	O10	Al4	013	88.9(4)
042	M6	O64 ¹	98.0(5)	O10	Al4	015	94.3(4)
O63	P1	O631	180.0(8)	012	Al4	O10	93.1(5)
O63	P1	O641	104.3(6)	012	Al4	011	82.0(3)
O63	P1	O64	75.7(6)	012	Al4	013	92.9(4)
O66	P1	O64	105.2(6)	012	Al4	015	170.9(5)
O66 ¹	P1	O64	74.8(6)	013	Al4	011	169.3(5)
O64 ¹	P1	O64	180.0	014	Al4	O10	171.5(4)
O651	P1	063	66.4(6)	014	Al4	011	95.2(4)
O65 ¹	P1	O63 ¹	113.6(6)	014	Al4	012	94.5(5)
O65	P1	O66 ¹	114.4(7)	014	Al4	013	94.5(4)
O65 ¹	P1	O66 ¹	65.6(7)	O651	P1	O64 ¹	72.2(6)

Symmetry code: 1-x,1-y,2-z; $^{2}+x$, $^{3}/_{2}-y$,+z. M stands for Mo (s.o.f. 0.8) + V (s.o.f. 0.2) which share the same site.

Figure S2. Polyhedral representation of ε -[Al₁₃O₄(OH)₂₄(H₂O)₁₂]⁷⁺ composed of four three-Al subclusters (one three-Al subcluster is shown in cyan, one in yellow, one in purple, and the forth in orange) surrounding a AlO₄ tetralhedron (shown in gold color) wide hexagon-shaped faces and four small triangle-shaped faces, which are composed of the edge-sharing OH ligands and terminal H₂O ligands. (H atoms of bridging OH and of aqua ligand are not shown for clarity).

Figure S3. The simulated P-XRD patterns of Al_{13} -PMo₁₀V₂ crystal (a) and the experimental P-XRD patterns of Al_{13} -PMo₁₀V₂ crystal (b).

Figure S4. TG-DTA curve of Al₁₃-PMo₁₀V₂.

Figure S5. The N₂ adsorption/desorption isotherm plot of Al₁₃-PMo₁₀V₂ at 77K.

Establishment of the HD Standard Curve

The HD standard curve was established according to the Frank's method^[3]. First, 5 µL of HD was dissolved in 1 mL of petroleum ether. After mixing, 200 µL of the solution was removed and added to 800 µL of petroleum ether to obtain a 1 mg/mL HD stock solution. Then, 0, 20, 40, 60, 80, and 100 µL of HD stock, and 100, 80, 60, 40, 20, and 0 µL of petroleum ether, were added into six individual centrifuge tubes, respectively. Subsequently, 100 µL of anhydrous ethanol and 200 µL of Blue reagent were added into each tube to obtain six HD standard solutions at different concentrations. The standard solutions were incubated in an 80°C water bath for 15 min, cooled to room temperature. Then, 5 µL of 0.6 mol/L acetic acid solution and 3 mL of 95% ethanol solution were added into each tube to obtain diluted standard solutions (Figure S6). UV absorbance of the standard solution was measured at the maximum absorption wavelength of λ_{max} = 445 nm (Figure S7). The absorption values were plotted against the concentration of the standard solutions. After linear fitting, the HD standard curve was obtained as Y = 0.07718X + 0.02558 (R² = 0.998) (Eq. s1), where Y stands for absorbance λ_{max} = 445 nm and X stands for HD concentration (µg/mL).

After degradation of HD with various decontaminants, the UV absorption of the reaction solution at the maximum absorption wavelength was measured, and the residual HD concentration was calculated according to Eq. s1. Subsequently, the decontamination efficiency η of HD by various decontaminants was obtained using the equation $\eta = (\frac{C0 - CA}{C0}) \times 100\%$ (Eq. s2), where C₀ is the initial HD concentration, C_A is the remaining HD concentration after decontamination.

Figure S6. Image of the HD standard solutions at various concentration (B1-B6).

Figure S7. UV absorption spectra of the HD standard solutions. Inset: linear relationship between UV absorption and HD concentration at the maximum absorption wavelength. B1-B6: HD standard solutions with the concentration of 0, 5.874, 11.748, 17.621, 23.495, 29.369 μ g/mL, respectively. Solvent: 95% ethanol.

Establishment of the GD Standard Curve

The following method was used to prepare the GD stand curve^[s3]. GD (5 μ L) was dissolved in 1 mL of isopropanol. After mixing, 200 μ L of the solution was added to 800 μ L of isopropanol to obtain a 1 mg/mL GD stock solution. GD stock solution of 0, 20, 40, 60, 80, and 100 μ L were added to 100, 80, 60, 40, 20, and 0 μ L of isopropanol, respectively. Subsequently, 100 μ L of 0.2% (w/w) benzidine and 100 μ L of 1% (w/w) sodium perborate were added to each tube to obtain GD standard solutions at different concentrations. The standard solutions were incubated in a 37°C water bath for 15 min, cooled to room temperature, and 3 mL of isopropanol were added into each tube to obtain the diluted standard solutions (Figure S8). UV absorbance was measured at 425 nm

(Figure S9). The ultraviolet absorption values were plotted against the concentration of the standard solutions. After the linear fitting, the GD standard curve was obtained as Y = 0.1368 + 0.03221X (R² = 0.998) (Eq. s3), where Y stands for absorbance at λ_{max} = 425 nm and X stands for GD concentration (µg/mL).

After degradation of GD with various decontaminants, the UV absorption of the reaction solution at the maximum absorption wavelength was measured, and the residual GD concentration was calculated according to Eq. s3. Subsequently, the decontamination efficiency η of GD by $\underline{C0 - CA}$

various decontaminants was obtained using the equation $\eta = (\begin{array}{c} C0 \\ \end{array}) \times 100\%$ (eq. s4), where C₀ is the initial GD concentration, C_A is the remaining GD concentration after decontamination.

Figure S8. Image of the GD standard solutions at various concentration (B1-B6).

Figure S9. UV absorption spectra of the GD standard solutions. Inset: linear relationship between UV absorption and GD concentration at the maximum absorption wavelength. B1-B6: GD standard solutions with the concentration of 0, 6.061, 12.12, 18.18, 24.24, 30.31 μ g/mL. Solvent: isopropanol.

Figure S10. Comparison of the degradation efficiency of Al_{13} -PMo $_{10}V_2$ (black) and MOF-808 (red). Degradation condition: 25°C, 40 min. Degradation agent dosage: 50 mg. GD solution: 4 µL of GD dissolved in 40 μ L of isopropanol solution.

Figure S11. The GC chromatograms of pure CEES and degradation products of CEES after degradation with Al_{13} -PMo₁₀V₂.

Figure S12. The UV absorption spectra of pristine DMNP (black) solution and the DMNP

solution after degradation by Al_{13} -PMo₁₀V₂ (red). Degradation condition: 25°C. Dosage of Al_{13} -PMo₁₀V₂: 50 mg. 0.5 mL of DMNP in a solution of acetone and water (9:1 v/v). Degradation time: 1 h.

Figure S13. The reusability of Al_{13} -PMo₁₀V₂ for degrading HD. Degradation condition: 25°C. HD solution: 4 µL of HD dissolved in 40 µL of petroleum ether solution. Reaction time: 120 min.

Figure S14. The reusability of Al_{13} -PMo₁₀V₂ for degrading GD. Degradation condition: 25°C, 40 min. GD solution: 4 µL of GD dissolved in 40 µL of isopropanol solution.

Figure S15. Infrared spectra of Al_{13} -PMo₁₀V₂ before (a) and after (b) degradation of HD/GD.

Figure S16. Median lethal dose (LD50) values for the decontamination products in mice model. Error bars = 95% confidence interval (CI). The number of animals used per treatment group was 50. All animals were challenged with neat soman (GD).

References

 [s1] Mizuno K, Mura T, Uchida S. Control of Polymorphisms and Functions in All-Inorganic Ionic Crystals Based on Polyaluminum Hydroxide and Polyoxometalates. Crystal Growth & Design, 2016, 16(9): 4968-4974. [s2] Wang M, Muhammed M. Novel synthesis of Al₁₃-cluster based alumina materials.
Nanostructured materials, 1999, 11(8): 1219-1229.

[s3] Zhang L, Sun J, Zhou Y, Zhong Y, Ying Y, Li Y, Liu Y, Zuhra Z, Huang C. Layer-by-layer assembly of Cu₃(BTC)₂ on chitosan non-woven fabrics: a promising haemostatic decontaminant composite material against sulfur mustard. Journal of Materials Chemistry B, 2017, 5(30): 6138--6146.