Supplementary Information

Controlling the gate-sorption properties of solid solutions of Werner complexes by varying component ratios

Shin-ichiro Noro,*^{ab} Yu Song,^b Yutaro Tanimoto,^b Yuh Hijikata,^c Kazuya Kubo,^d and Takayoshi Nakamura*^e

^a Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
^b Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan.
^c Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan

^d Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Akogun, Hyogo 678-1297, Japan

^e Research Institute for Electronic Science, Hokkaido University, Sapporo 010-0020, Japan

1	ATR-IR spectra	2
2	TG analysis	3
3	UV-vis spectra	4
4	Powder X-ray diffraction (PXRD) patterns	5-10
5	Acetone sorption properties	11-13
6	Theoretical calculations	14-15
7	References	16

Table of contents

1. ATR-IR spectra

Fig. S1. ATR-IR spectra of α -PAC-2-PF₆/CF₃SO₃ (x = @) (red, x = 1; blue, x = 0.75; green, x = 0.50; purple, x = 0.25; black, x = 0).

Fig. S2. Plot of x vs I(847cm⁻¹)/I(1448cm⁻¹), where I(847cm⁻¹) and I(1448cm⁻¹) are intensities at each wavenumber. The bands at 847 and 1448 cm⁻¹ are assigned as a $PF_6^ v_3$ vibration and a pyridine ring stretching vibration, respectively.^{1,2} The solid line represents the least-squares liner fit.

2. TG analysis

Fig. S3. TG curves of α -PAC-2-PF₆/CF₃SO₃ (x = @) (red, x = 1; blue, x = 0.75; green, x = 0.50; purple, x = 0.25; black, x = 0).

3. UV-vis spectra

Fig. S4. UV-vis spectra of α -PAC-2-PF₆ (red) and α -PAC-2-CF₃SO₃ (blue) in acetone solution (thick lines) and solid state (thin lines).

4. Powder X-ray diffraction patterns

x	a / Å	<i>b</i> / Å	c / Å	β/°	V / Å ³	<i>R</i> _p / %	R _{wp} / %
0	10.546(2)	16.272(3)	16.851(3)	-	2892(1)	5.13	7.48
0.25	10.553(5)	16.253(5)	16.818(8)	-	2885(2)	8.66	12.45
0.25	10.57(1)	14.81(2)	18.30(2)	92.17(5)	2864(5)	8.18	12.62
0.5	10.462(5)	14.473(6)	18.213(8)	91.57(2)	2757(2)	3.00	4.07
0.75	10.482(5)	14.436(6)	17.953(6)	91.94(2)	2715(2)	3.14	4.31
1	10.434(6)	14.323(7)	17.622(8)	92.03(2)	2632(2)	3.72	5.43

Table S1. Unit cell parameters for α -PAC-2-PF₆/CF₃SO₃ (x = @) derived from Pawley fitting.

Fig. S5. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 1). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S6. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 0.75). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S7. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 0.5). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S8. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 0.25). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S9. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 0.25). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be *Pbcn* by the indexing routine of the TOPAS program package.

Fig. S10. Pawley fit of the PXRD pattern of α -PAC-2-PF₆/CF₃SO₃ (x = 0). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be *Pbcn* by the indexing routine of the TOPAS program package.

Fig. S11. Composition ratio-dependent cell parameters of α -PAC-2-PF₆/CF₃SO₃ (x = (a)). Red, green, purple, and blue symbols indicate *a*, *b*, *c*, and *V*, respectively.

Fig. S12. PXRD patterns of α -PAC-2-PF₆/CF₃SO₃(x = 0.75) before (red) and after (blue) an exposure to a saturated acetone vapor.

Fig. S13. PXRD patterns of α -PAC-2-PF₆/CF₃SO₃(x = 0.5) before (red) and after (blue) an exposure to a saturated acetone vapor.

Fig. S14. PXRD patterns of α -PAC-2-PF₆/CF₃SO₃(x = 0.25) before (red) and after (blue) an exposure to a saturated acetone vapor.

5. Acetone sorption properties

Fig. S15. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in α -PAC-2-PF₆/CF₃SO₃ (x = 0.75) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (α -PAC-2-PF₆: α -PAC-2-CF₃SO₃ = 0.75 : 0.25) calculated using the acetone adsorption/desorption data of pure α -PAC-2-PF₆ and α -PAC-2-CF₃SO₃.

Fig. S16. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in α -PAC-2-PF₆/CF₃SO₃ (x = 0.5) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (α -PAC-2-PF₆ : α -PAC-2-CF₃SO₃ = 0.5 : 0.5) calculated using the acetone adsorption/desorption data of pure α -PAC-2-PF₆ and α -PAC-2-CF₃SO₃.

Fig. S17. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in α -PAC-2-PF₆/CF₃SO₃ (x = 0.25) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (α -PAC-2-PF₆ : α -PAC-2-CF₃SO₃ = 0.25 : 0.75) calculated using the acetone adsorption/desorption data of pure α -PAC-2-PF₆ and α -PAC-2-CF₃SO₃.

6. Theoretical calculations

 $E_{\rm b}$ = -4.1 kcal·mol⁻¹

 $E_{\rm b}$ = -3.1 kcal·mol⁻¹

Fig. S18. Optimized structures of (a) $\{[Cu(PF_6)_2(py)_4] \cdot acetone\}$, (b) $\{[Cu(CF_3SO_3)_2(py)_4] \cdot acetone\}$ with the interaction between acetone and F/O atoms of CF₃SO₃ anion, and (c) $\{[Cu(CF_3SO_3)_2(py)_4] \cdot acetone\}$ with the interaction between

acetone and F atom of CF_3SO_3 . The binding energy of acetone for $[Cu(PF_6)_2(py)_4]$ was larger than those for $[Cu(CF_3SO_3)_2(py)_4]$.

7. References

- S. Noro, R. Matsuda, Y. Hijikata, Y. Inubushi, S. Takeda, S. Kitagawa, Y. Takahashi, M. Yoshitake, K. Kubo and T. Nakamura, High CO₂/CH₄ Selectivity of a Flexible Copper(II) Porous Coordination Polymer under Humid Conditions. *ChemPlusChem*, 2015, **80**, 1517.
- 2. R. M. Silverstein, F. X. Webster, D. J. Kiemle and D. L. Bryce, *Spectrometric Identification of Organic Compounds*, eighth ed.; Wiley, 2014.