Supporting Information for

P-Alkynyl Functionalized Benzazaphospholes as Transmetalating Agents

Daniel Y. Zhou,[†] Preston M. Miura-Akagi,[†] Sierra M. McCarty,[†] Celeste H. Guiles,[†] Timothy J. O'Donnell,[†] Wesley Y. Yoshida,[†] Colleen E. Krause,[‡] Arnold L. Rheingold,[£] Russell P. Hughes,[△] and Matthew F. Cain^{*,†}

[†] Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States

[‡] Department of Chemistry, University of Hartford, 200 Bloomfield Avenue, West Hartford, Connecticut, 06117, United States

[£] Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States

^A 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States

- 1. Experimentals and NMR spectra for new compounds (page S1-S27)
- 2. Stoichiometric and Catalytic Studies (S28-S69)
- 3. DFT and NBO Results for Azaphospholanes (S70-S71)
- Electrochemistry Experimental Details including all Cyclic Voltammetry Plots (S72 S79)
- 5. Experimental Details for Crystal Structure Refinement and Acquisition (S80 S147)

1. Experimentals and NMR Spectra for New Compounds:

General Experimental Details. Unless otherwise specified, all reactions and manipulations were performed under a nitrogen atmosphere in a MBraun glovebox or using standard Schlenk techniques. All glassware was oven-dried overnight (at minimum) at 140 °C prior to use. Anhydrous solvents were purchased directly from chemical suppliers (Aldrich or Acros), pumped directly into the glove box, and stored over oven-activated 4 or 5 Å molecular sieves (Aldrich). 4N HCl in dioxane, TMS–I, BrMgCCPh, Na₂PdCl₄, P(*t*-Bu)₂Cy, P(*t*-Bu)Cy₂, PCy₃, CuI, and anhydrous NH(*i*-Pr)₂ were purchased from commercial suppliers. Benzazaphosphole **1** and Pd(II) complexes **C** and **D** were prepared by the published methods referenced in the manuscript. NMR spectra were obtained on either Varian spectrometers operating at 300, 400, or 500 MHz; all spectra are displayed in the Supporting Information. NMR chemical shifts are reported as ppm relative to tetramethylsilane and are referenced to the residual proton or ¹³C signal of the solvent (¹H CDCl₃, 7.27 ppm; ¹H C₆D₆, 7.16 ppm; ¹³C CDCl₃ 77.16 ppm; ¹³C C₆D₆, 128.06 ppm).

IMPORTANT NOTE

Some of the NMR spectra shown below feature an artifact with the following chemical shifts: ¹H NMR spectroscopy: 5 ppm ¹³C{¹H} NMR spectroscopy: 110 ppm

The artifact is most likely the result of intermittent problems with the spectrometer's reference generator board. Currently, due to budget problems at the University of Hawaii, repairs to address this problem have been delayed, and the COVID-19 outbreak has further complicated the situation.

Synthesis of 2

Compound 1 (100 mg, 0.339 mmol) was dissolved in 3 mL of toluene in a Schlenk bomb in the glovebox. The solution was taken out of the glovebox and 4N HCl in dioxane (169 μ L, 0.678 mmol, 2 equiv.) was injected via syringe under positive N₂ pressure and stirred for 15 min. The reaction mixture was concentrated under vacuum, and the residual yellow solid was recrystallized from 10 mL of a 1:1 mixture of CHCl₃ and MeCN at -35 °C to give a white solid 2 (70 mg, 0.211 mmol, 63%). Crystals suitable for X-ray diffraction were obtained from this recrystallization.

Anal. Calcd for $C_{19}H_{23}CINP$: C, 68.77; H, 6.99; N, 4.22. Found: C, 68.67; H, 6.98; N, 4.08. ³¹P{¹H} NMR (202 MHz, C₆D₆): δ 141.0. ¹H NMR (500 MHz, C₆D₆): δ 7.64 (m, 1H, Ar), 7.15 (m, 3H, Ar), 7.04 (m, 2H, Ar), 6.89 (m, 1H, Ar), 4.95 (dd, J = 18, 6 Hz, 1H, CH₂), 4.12 (dd, J = 18, 6 Hz, 1H, CH₂), 3.78 (sept, J = 6 Hz, 1H, CH), 2.74 (sept, J = 6 Hz, 1H, CH), 1.42 (d, J = 6 Hz, 3H, Me), 1.19 (d, J = 6 Hz, 3H, Me), 1.11 (d, J = 6 Hz, 3H, Me), 0.9 (d, J = 6 Hz, 3H, Me). ¹³C NMR (125 MHz, C₆D₆): δ 149.1 (d, J = 4 Hz, Ar), 147.0 (d, J = 4 Hz Ar), 143.9 (Ar), 143.6 (d, J = 21 Hz, Ar) 136.8 (d, J = 13 Hz, Ar), 130.3 (Ar), 128.5 (Ar), 128.3 (d, J = 5 Hz, Ar), 128.1 (d, J = 7 Hz, Ar), 124.5 (Ar), 124.2 (Ar), 122.4 (Ar), 64.1 (d, J = 16 Hz, CH₂), 28.5 (CH), 28.4 (CH), 25.17 (Me), 25.13 (Me), 24.9 (d, J = 5 Hz, Me), 24.7 (Me).

³¹P{¹H} NMR (202 MHz, C_6D_6)

¹³C{¹H} NMR (125 MHz, CDCl₃)

	CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu									
Date of report	8/10/2018	6:54:44PM								
User ID	Administrat	tor								
Comments	PMA 343 [Cain / Miura-Aka	gi]							
DATE & TIME SAMPLE ID WEIGHT (mg)	8/10/20 18410 2.365	CARBON HYDROGEN	68.665% 6.982% 4.078%		P_ID USER ID MODE	EA LAB Administrator CHN				

Special Handling

The sample was transferred under argon and was combusted in a tin capsule that was crimp-sealed with a die apparatus.

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer. Air-sensitive samples were handled in a VAC Atmospheres glovebox.

Chemical Formula: C₁₉H₂₃CINP Exact Mass: 331.1257 Molecular Weight: 331.8238 Elemental Analysis: C, 68.77; H, 6.99; Cl, 10.68; N, 4.22; P, 9.33

Synthesis of 3

Compound 1 (3.69 g, 12.5 mmol) and a stir bar were loaded in a Schlenk bomb inside the glovebox and dissolved in 10 mL of toluene. The bomb was taken outside the glovebox and HCl (4 N in 1,4-dioxane, 6.25 mL, 25.0 mmol, 2.00 equiv.) was injected through a septum via syringe under positive N₂ pressure. The mixture was stirred at room temperature for 15 min. The bomb was brought back into the glovebox, and the reaction mixture was concentrated under vacuum. The residue was washed with 10 mL of pentane, re-concentrated, and then dissolved in 10 mL of THF. The bomb was taken back outside the glovebox and placed in an ice bath at 0 °C and BrMgCCPh (1.0M in THF, 25.0 mL, 25.0 mmol, 2.00 equiv.) was injected through a septum via syringe under positive N₂ pressure. The reaction mixture was warmed to room temperature overnight and then concentrated under vacuum on the Schlenk line. The residue was brought back inside the glovebox and extracted with pentane and filtered through Celite. The filtrate was concentrated to 50 mL and put in the freezer at -35 °C, resulting in the precipitation of the product as a white crystalline solid (3.07 g, 7.72 mmol, 62%). Redissolving a portion of the crystalline product in pentane, followed by subsequent cooling to -35 °C afforded X-ray quality crystals.

Anal. Calcd. for $C_{27}H_{28}NP$: C, 81.58; H, 7.10; N, 3.52. Found: C, 81.09; H, 6.97; N, 3.23. ³¹P{¹H} NMR (160 MHz, C₆D₆): δ 34.8. ¹H NMR (500 MHz, CDCl₃): δ 7.82-7.75 (m, 1H, Ar), 7.49-7.36 (m, 5H, Ar), 7.34-7.26 (m, 4H, Ar), 7.24-7.18 (m, 2H, Ar), 5.12 (d, *J* = 15 Hz, 1H, CH₂), 4.35 (dd, *J* =14, 14 Hz, 1H, CH₂), 3.86 (septet, *J* = 7 Hz, 1H, CH), 2.88 (septet, *J* = 7 Hz, 1H, CH), 1.31 (d, *J* = 7 Hz, 6H, Me), 1.24 (d, *J* = 7 Hz, 3H, Me), 1.12 (d, *J* = 7 Hz, 3H, Me). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 150.7 (Ar), 148.1 (Ar), 144.3 (Ar), 139.9 (d, *J* = 16 Hz, Ar), 139.7 (d, *J* = 10 Hz, Ar), 131.6 (Ar), 128.6 (d, *J* = 19 Hz, Ar), 128.2 (Ar), 127.9 (Ar), 127.6 (d, *J* = 7 Hz, Ar), 127.5 (Ar), 127.3 (Ar), 124.2 (Ar), 123.8 (Ar), 122.9 (Ar), 122.4 (Ar), 104.8 (d, *J* = 11 Hz, P-C≡C), 92.0 (d, *J* = 77 Hz, P-C≡C), 62.8 (d, *J* = 11 Hz, CH₂), 28.8 (CH), 28.4 (CH), 25.4 (Me), 25.1 (Me), 24.7 (Me), 24.6 (Me).

 $^{31}P{^{1}H} NMR (160 MHz, C_6D_6)$

$^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃)

CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu											
Date of report	11/22/2019 6:36:27PM										
User ID	Administrator										
Comments	DYZ-47 [Ca	in / Zhou]									
DATE & TIME SAMPLE ID WEIGHT (mg)	11/22/20 19630 1.907	19 4:29:22 PM CARBON HYDROGEN NITROGEN	81.093% 6.968% 3.226%			P_ID USER ID MODE	EA LAB Administrator CHN				

Special Handling

The sample was transferred under argon and was combusted in a tin capsule that was crimp-sealed with a die apparatus.

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer. Air-sensitive samples were handled in a VAC Atmospheres glovebox.

Chemical Formula: C₂₇H₂₈NP Exact Mass: 397.1959 Molecular Weight: 397.5018 Elemental Analysis: C, 81.58; H, 7.10; N, 3.52; P, 7.79

Synthesis of 4

Compound 1 (0.250 g, 0.85 mmol) and a stir bar were loaded in a Schlenk bomb inside the glovebox and dissolved in 10 mL of toluene. The bomb was taken outside the glovebox and HCl (4 N in 1,4-dioxane, 0.425 mL, 1.7 mmol, 2.00 equiv.) was injected through a septum via syringe under positive N₂ pressure. The mixture was stirred at room temperature for 15 min. The bomb was brought back into the glovebox and the reaction mixture was concentrated under vacuum. The residue was then dissolved in 10 mL of DCM, TMS-I (0.186 g, 0.93 mmol, 1.1 equiv.) was added dropwise, and the reaction mixture was stirred overnight then concentrated. The crude solid was recrystallized from a 2:1 mixture of Et₂O/pentane at -35 °C, resulting in the precipitation of the product as a yellow crystalline solid (0.253 g, 0.60 mmol, 71%).

Initially, we attempted to prepare 4 using KI instead of TMS–I, which never fully converted 2 to 4. Attempted purification of the 4:2 mixture by recrystallization from pentane at -35 $^{\circ}$ C afforded X-ray quality crystals in which the halogen site was refined as 75% I and 25% Cl with fixed P-X distances.

Anal. Calcd. for $C_{27}H_{28}NP$: C, 53.91; H, 5.48; N, 3.31. Found: C, 54.33; H, 5.56; N, 3.17. ³¹P{¹H} NMR (160 MHz, C_7D_8): δ 158.8. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (dd, J = 7, 3.5 Hz, 1H, Ar), 7.54-7.43 (m, 4H, Ar), 7.36-7.33 (m, 1H, Ar), 7.26-7.20 (m, 1H, Ar), 4.68 (br, 2H, CH₂), 3.14 (br, 2H, CH), 1.30 (d, J = 6 Hz, 6H, Me), 1.19 (d, J = 6 Hz, 6H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.8 (Ar), 143.9 (Ar), 143.0 (d, J = 28 Hz, Ar), 136.4 (d, J = 12 Hz, Ar), 130.1 (Ar), 128.6 (Ar), 128.2 (Ar), 128.1 (d, J = 20 Hz, Ar), 124.7 (Ar), 122.3 (Ar), 65.2 (d, J = 17 Hz, CH₂), 28.5 (Me), 25.1 (overlapping CH and Me).

 $^{31}P{^{1}H} NMR (160 MHz, C_7D_8)$

¹H NMR (500 MHz, CDCl₃)

¹³C{¹H} NMR (125 MHz, CDCl₃)

VT NMR spectroscopy

-60 °C (top) to +60 °C (bottom), 15 ° intervals

¹H NMR (500 MHz, C₇D₈)

	CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu										
Date of report	3/20/2020 3:37:24PM										
User ID	Administrato	r									
Comments	DZ-56 [Cair	n / Zhou]									
DATE & TIME SAMPLE ID WEIGHT (mg)	3/20/202 20095 2.439	0 2:32:45 PM CARBON HYDROGEN NITROGEN	54.327% 5.563% 3.169%			P_ID USER ID MODE	ea lab Adminis Chn	strator			

Special Handling

The sample was transferred under argon and was combusted in a tin capsule that was crimp-sealed with a die apparatus.

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer. Air-sensitive samples were handled in a VAC Atmospheres glovebox.

Chemical Formula: C₁₉H₂₃INP Exact Mass: 423.0613 Molecular Weight: 423.2782 Elemental Analysis: C, 53.91; H, 5.48; I, 29.98; N, 3.31; P, 7.32

Synthesis of 5-*p*-MeC₆H₄.

Compound 1 (200 mg, 0.677 mmol) and a stir bar were loaded in a Schlenk bomb inside the glovebox and dissolved in 4 mL of toluene. The bomb was taken outside of the glovebox and HCl (4 N in 1,4-dioxane, 340 μ L, 1.35 mmol, 2.00 equiv) was injected through a septum via syringe under positive N₂ pressure. The mixture was stirred at room temperature for 15 min. The bomb was brought back into the glovebox, and the reaction mixture was concentrated under vacuum. The residue was washed with 5 mL of pentane, re-concentrated, and then dissolved in 5 mL of THF. The bomb was taken back outside the glovebox and placed in an ice bath at 0 °C and (*p*-Me)C₆H₄MgBr (1.0 M in THF, 1.35 mL, 1.35 mmol, 2.00 equiv) was injected through a septum via syringe under positive N₂ pressure. The reaction mixture was warmed to room temperature over the course of 30 min and then brought back inside the glovebox and concentrated under vacuum. The residue was suspended in 5 mL of pentane, filtered through a Celite plug, and then washed with an additional 5 mL of pentane. The filtrates were combined and concentrated to ~5 mL and put in the freezer at -35 °C, resulting in the precipitation of the product as a white crystalline solid (89 mg, 0.230 mmol, 34%). Dissolving 10 mg of this solid in 3 mL of acetonitrile, followed by subsequent cooling to -35 °C afforded X-ray quality crystals.

Anal. Calcd. for $C_{26}H_{30}NP$: C, 80.59; H, 7.80; N, 3.61. Found: C, 80.25; H, 7.78; N, 3.73. ³¹P{¹H} NMR (160 MHz, CDCl₃): δ 66.9. ¹H NMR (500 MHz, CDCl₃): δ 7.49-7.33 (m, 4H, Ar), 7.23-7.14 (m, 4H, Ar), 7.06-7.00 (m, 3H, Ar), 5.13 (d, J = 15 Hz, 1H, CH₂), 4.38 (dd, J = 15, 10 Hz, 1H, CH₂), 2.98 (septet, J = 7 Hz, 1H, CH), 2.92 (septet, J = 7 Hz, 1H, CH), 2.30 (3H, Me), 1.30 (d, J = 7 Hz, 3H, Me), 1.10 (d, J = 7 Hz, 3H, Me), 1.04 (d, J = 7 Hz, 3H, Me), 0.47 (d, J = 7 Hz, 3H, Me). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 150.3 (Ar), 148.4 (Ar), 144.2 (Ar), 142.4 (Ar), 141.2 (d, J = 17 Hz, Ar), 140.7 (d, J = 40 Hz, Ar), 139.7 (Ar), 132.8 (d, J = 23 Hz), 128.8 (d, J = 7 Hz, Ar), 128.5 (d, J = 25 Hz, Ar), 128.2 (Ar), 127.4 (d, J = 8 Hz, Ar), 126.8 (Ar), 124.4 (Ar), 123.5 (Ar), 122.2 (Ar), 63.5 (d, J = 10 Hz, CH₂), 28.3 (d, J = 6 Hz, CH), 28.2 (CH), 25.0 (Me), 24.7 (Me), 24.6 (Me), 23.8 (Me), 21.4 (Me).

³¹P{¹H} NMR (160 MHz, CDCl₃)

¹³C{¹H} NMR (125 MHz, CDCl₃)

	CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu									
Date of report	6/26/2020 1:33:08PM									
User ID	Administrator									
Comments	MC 4-49 [Cain]									
DATE & TIME SAMPLE ID WEIGHT (mg)	6/26/2020 1:3 20146 2.474	1:53 PM			P_ID USER ID MODE	EA LAB Administrator CHN				
	CAI HYI NIT	ROGEN 80.251 DROGEN 7.780% TROGEN 3.728%	% 5							

Special Handling

The sample was transferred under argon and was combusted in a tin capsule that was crimp-sealed with a die apparatus.

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer. Air-sensitive samples were handled in a VAC Atmospheres glovebox.

Chemical Formula: C₂₆H₃₀NP Exact Mass: 387.2116 Molecular Weight: 387.5068 m/z: 387.2116 (100.0%), 388.2149 (28.1%), 389.2183 (2.7%), 389.2183 (1.1%) Elemental Analysis: C, 80.59; H, 7.80; N, 3.61; P, 7.99

Page 1 of 1

Generation of 5-p-FC₆H₄.

Compounds **4** (58 mg, 0.137 mmol) and **D** (78 mg, 0.137 mmol) were combined in a vial, dissolved in 5 mL of toluene, and transferred to a Schlenk bomb inside the glovebox. The bomb was taken outside the glovebox and placed in an oil bath at 120 °C. After 24 h, ${}^{31}P{}^{1}H{}$ NMR spectroscopy revealed the formation of **5**-*p*-**F**C₆H₄ (65.6 ppm) and *trans*-PdI₂(PEt₃)₂ (8.0 ppm) as the major products accompanied by a trace amount of **1** (182.2 ppm) and presumably *trans*-Pd(*p*-FC₆H₄)₂(PEt₃)₂ (16.7 ppm). The reaction mixture was subsequently brought back inside the glovebox and concentrated under vacuum. The crude product mixture was recrystallized from CH₃CN, which removed **1** and *trans*-Pd(*p*-FC₆H₄)₂(PEt₃)₂. Dissolving the remaining two components of the precipitate in 1 mL of pentane followed by filtration through a silica plug, followed by further elution with 2-3 mL of pentane afforded a filtrate with only a single ³¹P NMR (121 MHz, CDCl₃) signal (65.9 ppm). Concentration of the filtrate under vacuum afforded 7 mg of a slightly impure white solid by ¹H and ¹³C{¹H} NMR spectroscopy. Diagnostic ¹H NMR (500 MHz, CDCl₃): δ 5.12 (d, *J* = 15 Hz, 1H, CH₂), 4.38 (dd, *J* = 15, 15 Hz, 1H, CH₂), 2.95 (septet, *J* = 7 Hz, 1H, CH), 2.87 (septet, *J* = 7 Hz, 1H, CH).

Synthesis of 6-Pd₂-(P(t-Bu)₃)₂.

Synthesis of 6-Pd₂-(P(*t*-Bu)₃)₂. 1:1 Stoichiometry. Compound 4 (50 mg, 0.118 mmol), [Pd(P(*t*-Bu)₃)₂] (60 mg, 0.118 mmol), and a stir bar were combined in a vial and dissolved in 3 mL of toluene, resulting in a dark reaction mixture. After 24 h at room temperature, ${}^{31}P{}^{1}H$ } NMR spectroscopy revealed that 4 had been consumed. The reaction mixture was subsequently concentrated under vacuum, and the dark residue was extracted with pentane (2 x 5 mL) and filtered through a Celite plug. The filtrate was concentrated under vacuum and re-dissolved in 2 mL of ether, followed by the addition of 4 mL of acetonitrile. The Et₂O/CH₃CN solution was then cooled to -35 °C, leading to the precipitation of dark crystals suitable for X-ray diffraction (< 10 mg).

1:2 Stoichiometry. Compound **4** (31 mg, 0.0732 mmol), $[Pd(P(t-Bu)_3)_2]$ (75 mg, 0.147 mmol, 2 equiv), and a stir bar were combined in a vial and dissolved in 3 mL of toluene, resulting in a dark reaction mixture. After 24 h at room temperature, ³¹P{¹H} NMR spectroscopy revealed that **4** had been consumed. The reaction mixture was concentrated under vacuum, pentane was added, and the mixture was re-concentrated. Extraction of the dark residue with additional pentane (3 x 5 mL) followed by filtration through a Celite plug afforded a dark filtrate that was concentrated under vacuum. The crude product mixture was dissolved in 2 mL of ether, 4 mL of acetonitrile was added, and the solution was cooled to -35 °C, resulting in the precipitation of dark crystalline solid. In order to remove an unidentified impurity (³¹P NMR (C₆D₆): 84.7 ppm) that was not present in the 1:1 stoichiometric case, the crystalline solid was washed with cold pentane, affording analytically pure material (23 mg, 0.0220 mmol, 30%).

Anal. Calcd. for $C_{43}H_{77}INP_3Pd_2$: C, 49.62; H, 7.46; N, 1.35. Found: C, 49.60; H, 7.51; N, 1.32. ³¹P{¹H} NMR (160 MHz, C₆D₆): δ 275.8 (t, *J* = 73 Hz, PN), 96.5 (d, *J* = 73 Hz, P(*t*-Bu)₃). ¹H NMR (500 MHz, C₆D₆): δ 7.90 (t, *J* = 7 Hz, 1H, Ar), 7.14-7.06 (br m, 5H, overlapping Ar), 6.96 (d, *J* = 7 Hz, 1H, Ar), 4.46 (br, 2H, CH₂), 3.85 (septet, *J* = 7 Hz, 2H, CH), 1.45 (br, 6H, Me), 1.30 (br m, 60H, overlapping *t*-Bu and Me). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 147.1 (Ar), 146.4 (Ar), 140.4 (Ar), 139.7 (Ar), 129.2 (d, *J* = 24 Hz, Ar), 128.8 (Ar), 127.4 (d, *J* = 11 Hz, Ar), 126.8 (Ar), 125.3 (Ar), 122.3 (Ar), 63.9 (CH₂), 36.5 (quat), 32.8 (*t*-Bu), 29.0 (CH), 27.9 (Me), 25.6 (Me).

 $^{31}P{^{1}H} NMR (160 MHz, C_6D_6)$

¹³C{¹H} NMR (125 MHz, C_6D_6)

	CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu											
Date of report	10/9/2020 3:00	10/9/2020 3:00:41PM										
User ID	Administrator	Administrator										
Comments	MC 5-18 [Cain]											
DATE & TIME SAMPLE ID WEIGHT (mg)	10/9/2020 10 20307 2.138	:26:18 AM			P_ID USER ID MODE	EA LAB Administrator CHN						
	CA HY NI	RBON 49. DROGEN 7.5 TROGEN 1.3	.599% 07% 323%									

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer.

Chemical Formula: C₄₃H₇₇INP₃Pd₂ Exact Mass: 1039.2383 Molecular Weight: 1040.7618 Elemental Analysis: C, 49.62; H, 7.46; I, 12.19; N, 1.35; P, 8.93; Pd, 20.45

Page 1 of 1

Synthesis of 7.

Compound 1 (200 mg, 0.68 mmol) and a stir bar were loaded in a Schlenk bomb inside the glovebox and dissolved in 5 mL of toluene. The bomb was taken outside the glovebox and HCl (4 N in 1,4-dioxane, 0.34 mL, 1.36 mmol, 2.00 equiv.) was injected through a septum via syringe under positive N₂ pressure. The reaction mixture was stirred at room temperature for 15 min. The bomb was then brought back into the glovebox, and the reaction mixture was concentrated under vacuum. The residue was washed with 10 mL of pentane, concentrated under vacuum, and then dissolved in 10 mL of THF. Solid KC₈ (0.100 g, 0.74 mmol, 1.1 equiv.) was added, and the reaction mixture was stirred overnight. The heterogeneous mixture was concentrated under vacuum, extracted with pentane, and filtered through a Celite plug. The filtrate was transferred to a 25 mL Schlenk bomb and concentrated again. Anhydrous octane (10 mL) was added to give a slurry and the Schlenk bomb was taken outside the glovebox. The slurry was heated at 70 °C until it became homogenous. The solution was then cooled to room temperature, resulting in the precipitation of white X-ray quality crystals (87 mg, 0.15 mmol, 43%).

Anal. Calcd. for $C_{38}H_{46}N_2P_2$: C, 77.00; H, 7.82; N, 4.73. Found: C, 76.96; H, 8.09; N, 4.44. ³¹P{¹H} NMR (160 MHz, CDCl₃): δ 93.3. ¹H NMR (500 MHz, C₆D₆): δ 7.15-7.13 (m, 2H, Ar), 7.11-6.98 (m, 6H, Ar), 6.90-6.85 (m, 4H, Ar), 6.61 (d, *J* = 7.5 Hz, 2H, Ar), 5.26 (d, *J* = 15 Hz, 2H, CH₂), 4.24-4.15 (overlapping m, 4H, overlapping CH w/ diastereotopic CH₂), 3.18 (septet, *J* = 7 Hz, 2H, CH), 1.36 (d, J = 7 Hz, 6H, CH₃), 1.26 (d, *J* = 7 Hz, 6H, CH₃), 0.94 (d, *J* = 7 Hz, 6H, CH₃), 0.79 (d, *J* = 7 Hz, 6H, CH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 150.3 (Ar), 148.3 (Ar), 144.7 (Ar), 129.9 (t, *J* = 13 Hz, Ar), 127.4 (Ar), 126.5 (Ar), 124.8 (Ar), 124.1 (Ar), 121.2 (Ar), 64.6 (CH₂), 29.0 (CH), 28.8 (CH), 26.1 (Me), 25.2 (Me), 24.6 (Me), 23.3 (Me). Once isolated, diphosphine **7** routinely decomposed in solution. In CDCl₃, the decomposition was fast, but even in C₆D₆, slow decomposition was apparent as evidenced by the appearance of other diastereotopic-type CH₂ and *N*-Dipp methyl signals. The ¹³C{¹H} NMR spectrum has fewer than the expected amount of Ar resonances likely due to overlap with the residual solvent signal.

¹³C{¹H} NMR (125 MHz, C₆D₆)

	CENTC Elemental Analysis Facility University of Rochester Rochester, NY 14627 USA Email: ealab@chem.rochester.edu								
Date of report	9/11/2020 2:09:04P	M							
User ID	Administrator								
Comments	DZ-78 [Cain / Zhou]							
DATE & TIME SAMPLE ID WEIGHT (mg)	9/11/2020 2:01:5 20264D 2.100	9 PM		P_ID USER I MODE	EA LAB D Adminis CHN	strator			
	CARBO HYDRC NITRO	N 76.957% DGEN 8.088% GEN 4.436%							
DATE & TIME SAMPLE ID WEIGHT (mg)	9/11/2020 1:56:5 20264 2.435	4 PM		P_ID USER I MODE	EA LAB D Adminis CHN	strator			
	CARBO HYDRC NITRO	N 76.696% DGEN 8.125% GEN 4.431%							

Special Handling

The sample was transferred under argon and was combusted in a tin capsule that was crimp-sealed with a die apparatus.

Acknowledgment

Analytical data were obtained from the CENTC Elemental Analysis Facility at the University of Rochester, funded by NSF CHE-0650456.

Instrumentation

Microanalysis samples were weighed with a PerkinElmer Model AD6000 Autobalance and their compositions were determined with a PerkinElmer 2400 Series II Analyzer. Air-sensitive samples were handled in a VAC Atmospheres glovebox.

Chemical Formula: C₃₈H₄₆N₂P₂ Exact Mass: 592.3136 Molecular Weight: 592.7475 m/z: 592.3136 (100.0%), 593.3170 (41.1%), 594.3203 (8.2%) Elemental Analysis: C, 77.00; H, 7.82; N, 4.73; P, 10.45

Page 1 of 1

2. Stoichiometric and Catalytic Studies

Stoichiometric –CCPh Transfer

General Experimental Details: Alkynyl-functionalized benzazaphosphole **3** (25 mg, 0.063 mmol) was dissolved in approximately 1.5 ml of C_7D_8 and added to Pd complex **C** or **D** (35 mg, 0.063 mol). The reaction mixture was transferred to a J-Young tube and placed in an oil bath at 120 °C. The reaction was monitored by ¹H and ³¹P{H} for **C** and ³¹P{H} and ¹⁹F NMR spectroscopy for **D** in 12 h intervals until >95% conversion was reached.

Stoichiometric Studies \rightarrow C + 3 (³¹P Tracking)

³¹P{¹H} NMR (121 MHz, C₇D₈)

t = 0, no heat applied

t = 12 h, 120 °C

t = 24 h, 120 °C

³¹P{¹H} NMR (121 MHz, C₇D₈)

t = 36 h, 120 °C

t = 48 h, 120 °C

t = 60 h, 120 °C

t = 72 h, 120 °C

t = 84 h, 120 °C

t = 96 h, 120 °C

³¹P{¹H} NMR (121 MHz, C₇D₈)

t = 108 h, 120 °C

Stoichiometric Studies \rightarrow D + 3 (³¹P and ¹⁹F Tracking)

t = 0 h, no heat applied

¹⁹F{¹H} NMR (282 MHz, C_7D_8)

t = 12 h, 120 °C

t = 24 h, 120 °C

¹⁹F{¹H} NMR (282 MHz, C₇D₈)

t = 36 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

t = 48 h, 120 °C

¹⁹F{¹H} NMR (282 MHz, C_7D_8)

t = 60 h, 120 °C

¹⁹F{¹H} NMR (282 MHz, C_7D_8)

t = 72 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

t = 84 h, 120 °C

¹⁹F{¹H} NMR (282 MHz, C₇D₈)

t = 96 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

t = 108 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

t = 120 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

³¹P{¹H} NMR (121 MHz, C_7D_8)

t = 132 h, 120 °C

¹⁹F $\{^{1}H\}$ NMR (282 MHz, C₇D₈)

Catalytic Studies.

Na₂PdCl₄ (19 mg, 0.065 mmol, 10 mol%) and P(t-Bu)Cy₂ (32 mg, 0.126 mmol, 20 mol%) were loaded into a Schlenk bomb fitted with a screw-top Teflon cap and suspended in ~10 mL of NH(*i*-Pr)₂. The Schlenk bomb was sealed and brought outside of the glovebox, the Teflon cap was replaced with a rubber septum under positive N₂ pressure, and 1-iodo-2-methylbenzene was injected via syringe (80 µL, 0.628 mmol, 1 equiv). The rubber septum was removed under positive N₂ pressure, the Schlenk bomb was resealed, and the reaction mixture was placed in an oil bath at 80 °C for 20 min (for activation), affording a pale-yellow solution. The Schlenk bomb was brought back inside the glovebox and tetramethylammonium fluoride (TMAF) (293 mg, 3.15 mmol, 5 equiv) was added followed by [PN]-CCPh (3) (250 mg, 0.629 mmol, 1 equiv). The contents of the Schlenk bomb were brought back outside the glovebox and heated at 120 °C. Over the next 96 h, the reaction mixture grew increasingly orange, but its appearance was obscured by a large amount of grey precipitate. The reaction mixture was then concentrated under vacuum at 80 °C to remove the relatively high boiling amine solvent. The residual nonvolatiles were extracted with 10 mL of pentane and filtered through a silica plug. The plug was washed with an additional 25 mL of pentane and the filtrate was concentrated under vacuum, affording a clear oil (33 mg, 0.172 mmol, 27%). The purity of Ph–C=C–(o-Tol) was confirmed by ¹H and ¹³C $\{^{1}H\}$ NMR spectroscopy (see below).

¹H NMR (500 MHz, CDCl₃)

(CDCl₃ from benchtop containing water and residual grease)

$^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃) (CDCl₃ from benchtop containing water and residual grease)

Pre-Revision Catalysis. In an earlier iteration, the catalysis was performed using CuI as the additive (instead of CsF or TMAF). After comments by the reviewers and subsequent experiments, the effect of / advantages associated with CuI became unclear. Under these conditions and using a workup similar to what is described above, the desired product (Ph–C=C– (*o*-Tol)) was contaminated with diyne (Ph–C=C–C=C–Ph). Separation of these two components required reverse-phase HPLC using a Phenomenex Gemini C18 preparative column (250 x 21.2 mm, 5 μ m; PDA detection, flowrate: 12 mL/min) with 75% (acetonitrile/water with 0.1% formic acid) isocratic condition, yielding pure fractions of the targeted product and diyne. The clean fractions are shown below.

¹H NMR (500 MHz, CDCl₃)

¹³C{¹H} NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

Divne Byproduct (Ph–C \equiv C–C \equiv C–Ph)

$^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃)

Diyne Byproduct (Ph–C \equiv C–C \equiv C–Ph)

3. DFT AND NBO RESULTS FOR AZAPHOSPHOLANES: Calculated Structures (B3LYP-D3/LACV3P**)

The P-Cl and P-CC bonds are shorter in each of your compounds due to lower occupancy of the P-Cl or P-C σ^* orbital, as shown in the NLMOs below. This occupancy, which makes for a longer bond, comes from (mostly) delocalization of the adjacent N-lone pair(s) i.e. hyperconjugation. The stabilization in each case is quantified in kcal/mol below.

4. Electrochemistry Experimental Details including all Cyclic Voltammetry Plots

General Experimental Details:

All electrochemical measurements on 4 were conducted on a CHI 600E Electrochemical Analyzer with a three-electrode system. A glassy carbon working electrode, a silver wire as the quasi-reference electrode, and a platinum wire as the counter electrode were employed. All cyclic voltammograms were investigated under anhydrous conditions inside a nitrogen-filled glove box. All scans were performed in tetrahydrofuran (THF) with 0.1 M tetrabutylammonium tetrafluorophosphate $[Bu_4N][PF_6]$ as the supporting electrolyte. Ferrocene was used as an internal standard.

CV plots at varying scan rate are shown below. Also, an overlay plot is included.

Figure 1: Cyclic Voltammogram at 25 mV scan rate.

Figure 2: Cyclic Voltammogram at 50 mV scan rate.

Figure 3: Cyclic Voltammogram at 100 mV scan rate.

Figure 4: Cyclic Voltammogram at 200 mV scan rate.

Figure 5: Cyclic Voltammogram at 300 mV scan rate.

Figure 6: Cyclic Voltammogram at 400 mV scan rate.

Figure 7: Cyclic Voltammogram at 500 mV scan rate.

Figure 8: Cyclic Voltammogram at 600 mV scan rate.

Figure 9: Cyclic Voltammogram at 700 mV scan rate.

Figure 10: Cyclic Voltammogram at 800 mV scan rate.

Figure 11: Cyclic Voltammogram at 900 mV scan rate.

Figure 12: Cyclic Voltammogram at 1000 mV scan rate.

Figure 13: Cyclic Voltammogram + ferrocene at 100 mV scan rate.

Figure 14: Overlay of Cyclic Voltammograms at varying scan rates

5. Experimental Details for Crystal Structure Refinement and Acquisition

Full crystallographic descriptions of the structure determinations are provided in the Supporting Information. Data for all three structures were collected at 100K using Bruker diffractometers with rotating-anode sources and micro-focus optics. Standard data collection procedures and data processing programs were employed. For **4**, the halogen site was refined as 75% I and 25% Cl with fixed P-X distances. For **3**, highly disordered pentane was treated as a diffuse contribution using the program SQUEEZE (found: 73e/unit cell; req: for two mol. pentane, 84 e/unit cell). For structures **5-p-MeC₆H₄**, **6-Pd₂-(P(***t***-Bu)₃)₂, and 7**(**0**), all three structures were determined using a Bruker Ultra, mini-rotating-anode diffractometer with a microfocus mirror colimnator. Details for each are provided in the SI tables. In all cases, standard methods were used throughout. OLEX2 (Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341) software was used for structure refinement and data processing. The structure of 92 revealed compositional disorder resulting in a 62/38 ratio of phosphine and phosphine oxide.

Table 1. Crystal data and structure refinement for ca	ain71_0m_a (Compound 2).		
Identification code	PMA 343		
Empirical formula	C19 H23 Cl N P		
Formula weight	331.80		
Temperature	100.0 K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 11.7432(6) Å	<i>α</i> = 90°.	
	b = 10.4564(5) Å	$\beta = 105.441(3)^{\circ}$.	
	c = 15.0518(11) Å	$\gamma = 90^{\circ}$.	
Volume	1781.52(18)Å ³		
Ζ	4		
Density (calculated)	1.237 Mg/m ³		
Absorption coefficient	2.698 mm ⁻¹		
F(000)	704		
Crystal size	0.33 x 0.29 x 0.27 mm ³		
Theta range for data collection	3.905 to 70.234°.		
Index ranges	-14<=h<=13, -12<=k<=12, -16	<=l<=18	
Reflections collected	14613		
Independent reflections	3381 [R(int) = 0.0472]		
Completeness to theta = 67.679°	99.7 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.7533 and 0.6188		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3381 / 0 / 203		
Goodness-of-fit on F ²	1.045		
Final R indices [I>2sigma(I)]	R1 = 0.0471, $wR2 = 0.1232$		
R indices (all data)	R1 = 0.0497, wR2 = 0.1256		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.147 and -0.380 e.Å ⁻³		

	Х	у	Z	U(eq)
Cl(1)	8604(1)	5650(1)	5393(1)	30(1)
P(1)	7040(1)	4785(1)	4499(1)	19(1)
N(1)	7347(1)	4540(2)	3492(1)	16(1)
C(1)	8014(2)	3370(2)	3387(1)	19(1)
C(2)	7938(2)	2531(2)	4191(1)	16(1)
C(3)	8304(2)	1261(2)	4324(1)	20(1)
C(4)	8119(2)	598(2)	5073(1)	23(1)
C(5)	7587(2)	1190(2)	5688(1)	25(1)
C(6)	7251(2)	2467(2)	5574(1)	22(1)
C(7)	7433(2)	3135(2)	4820(1)	17(1)
C(8)	6944(2)	5366(2)	2705(1)	15(1)
C(9)	7733(2)	6239(2)	2476(1)	17(1)
C(10)	7319(2)	6984(2)	1684(1)	20(1)
C(11)	6165(2)	6884(2)	1146(1)	22(1)
C(12)	5396(2)	6028(2)	1386(1)	20(1)
C(13)	5770(2)	5246(2)	2165(1)	17(1)
C(14)	8990(2)	6407(2)	3063(2)	21(1)
C(15)	9884(2)	6197(3)	2498(2)	33(1)
C(16)	9151(2)	7738(2)	3511(2)	35(1)
C(17)	4896(2)	4318(2)	2401(1)	20(1)
C(18)	3990(2)	5060(2)	2772(2)	27(1)
C(19)	4285(2)	3482(2)	1576(2)	26(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for cain71_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

2.1649(8)
1.6681(16)
1.818(2)
1.485(3)
1.440(2)
0.9900
0.9900
1.517(3)
1.394(3)
1.395(3)
0.9500
1.389(3)
0.9500
1.392(3)
0.9500
1.391(3)
0.9500
1.396(3)
1.408(3)
1.408(3)
1.399(3)
1.515(3)
0.9500
1.385(3)
0.9500
1.386(3)
0.9500
1.400(3)
1.521(3)
1.0000
1.533(3)
1.536(3)
0.9800
0.9800

Table 3. Bond lengths [Å] and angles [°] for cain71_0m_a.

C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
С(16)-Н(16С)	0.9800
С(17)-Н(17)	1.0000
C(17)-C(18)	1.538(3)
C(17)-C(19)	1.532(3)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800
N(1)-P(1)-Cl(1)	106.02(6)
N(1)-P(1)-C(7)	89.74(9)
C(7)-P(1)-Cl(1)	96.76(6)
C(1)-N(1)-P(1)	118.12(13)
C(8)-N(1)-P(1)	123.57(13)
C(8)-N(1)-C(1)	118.22(15)
N(1)-C(1)-H(1A)	110.9
N(1)-C(1)-H(1B)	110.9
N(1)-C(1)-C(2)	104.27(16)
H(1A)-C(1)-H(1B)	108.9
C(2)-C(1)-H(1A)	110.9
C(2)-C(1)-H(1B)	110.9
C(3)-C(2)-C(1)	125.74(18)
C(3)-C(2)-C(7)	120.29(18)
C(7)-C(2)-C(1)	113.96(18)
C(2)-C(3)-H(3)	120.6
C(4)-C(3)-C(2)	118.88(19)
C(4)-C(3)-H(3)	120.6
C(3)-C(4)-H(4)	119.6
C(3)-C(4)-C(5)	120.9(2)
C(5)-C(4)-H(4)	119.6
C(4)-C(5)-H(5)	119.8

C(6)-C(5)-C(4)	120.5(2)
C(6)-C(5)-H(5)	119.8
C(5)-C(6)-H(6)	120.6
C(5)-C(6)-C(7)	118.8(2)
C(7)-C(6)-H(6)	120.6
C(2)-C(7)-P(1)	111.88(15)
C(6)-C(7)-P(1)	127.46(16)
C(6)-C(7)-C(2)	120.64(19)
C(9)-C(8)-N(1)	119.77(17)
C(9)-C(8)-C(13)	121.60(18)
C(13)-C(8)-N(1)	118.60(17)
C(8)-C(9)-C(14)	122.36(18)
C(10)-C(9)-C(8)	117.87(18)
C(10)-C(9)-C(14)	119.76(18)
C(9)-C(10)-H(10)	119.3
C(11)-C(10)-C(9)	121.34(19)
С(11)-С(10)-Н(10)	119.3
C(10)-C(11)-H(11)	120.0
C(10)-C(11)-C(12)	120.05(19)
С(12)-С(11)-Н(11)	120.0
C(11)-C(12)-H(12)	119.5
C(11)-C(12)-C(13)	120.94(19)
C(13)-C(12)-H(12)	119.5
C(8)-C(13)-C(17)	122.63(18)
C(12)-C(13)-C(8)	118.19(18)
C(12)-C(13)-C(17)	119.17(18)
C(9)-C(14)-H(14)	108.2
C(9)-C(14)-C(15)	111.38(18)
C(9)-C(14)-C(16)	110.33(18)
C(15)-C(14)-H(14)	108.2
C(15)-C(14)-C(16)	110.5(2)
C(16)-C(14)-H(14)	108.2
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5

H(15B)-C(15)-H(15C)109.5C(14)-C(16)-H(16A)109.5C(14)-C(16)-H(16C)109.5H(16A)-C(16)-H(16C)109.5H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(13)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(18)109.5C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(15A)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)109.5C(14)-C(16)-H(16B)109.5C(14)-C(16)-H(16C)109.5H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-H(17)107.9C(13)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(18)109.5C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(18A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16B)109.5C(14)-C(16)-H(16C)109.5H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16C)109.5H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(13)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(18)109.5C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5	C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)109.5H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(13)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(18)109.5C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19A)109.5H(18B)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5	C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)109.5H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(18)109.5C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19A)109.5H(18B)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(16A)-C(16)-H(16B)	109.5
H(16B)-C(16)-H(16C)109.5C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(16A)-C(16)-H(16C)	109.5
C(13)-C(17)-H(17)107.9C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(16B)-C(16)-H(16C)	109.5
C(13)-C(17)-C(18)109.74(17)C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	С(13)-С(17)-Н(17)	107.9
C(13)-C(17)-C(19)111.97(17)C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(13)-C(17)-C(18)	109.74(17)
C(18)-C(17)-H(17)107.9C(19)-C(17)-H(17)107.9C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18B)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19C)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(13)-C(17)-C(19)	111.97(17)
C(19)-C(17)-H(17)107.9C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18B)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	С(18)-С(17)-Н(17)	107.9
C(19)-C(17)-C(18)111.24(17)C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	С(19)-С(17)-Н(17)	107.9
C(17)-C(18)-H(18A)109.5C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18B)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(19)-C(17)-C(18)	111.24(17)
C(17)-C(18)-H(18B)109.5C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18C)109.5H(18A)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)109.5H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)109.5H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5H(19A)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(18A)-C(18)-H(18B)	109.5
H(18B)-C(18)-H(18C)109.5C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19B)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	H(18A)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)109.5C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19B)109.5H(19B)-C(19)-H(19C)109.5	H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19B)109.5C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19B)109.5H(19B)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	С(17)-С(19)-Н(19А)	109.5
C(17)-C(19)-H(19C)109.5H(19A)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)109.5H(19A)-C(19)-H(19C)109.5H(19B)-C(19)-H(19C)109.5	C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C) 109.5 H(19B)-C(19)-H(19C) 109.5	H(19A)-C(19)-H(19B)	109.5
H(19B)-C(19)-H(19C) 109.5	H(19A)-C(19)-H(19C)	109.5
	H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	35(1)	27(1)	25(1)	-8(1)	4(1)	-1(1)
P(1)	20(1)	21(1)	18(1)	0(1)	7(1)	4(1)
N(1)	17(1)	14(1)	15(1)	1(1)	4(1)	2(1)
C(1)	28(1)	12(1)	14(1)	2(1)	3(1)	0(1)
C(2)	16(1)	18(1)	15(1)	-1(1)	2(1)	-3(1)
C(3)	20(1)	17(1)	21(1)	-3(1)	4(1)	-2(1)
C(4)	25(1)	15(1)	23(1)	2(1)	-2(1)	-4(1)
C(5)	26(1)	27(1)	20(1)	6(1)	3(1)	-7(1)
C(6)	23(1)	26(1)	18(1)	0(1)	7(1)	-3(1)
C(7)	15(1)	19(1)	17(1)	-1(1)	2(1)	-2(1)
C(8)	17(1)	13(1)	14(1)	-1(1)	4(1)	2(1)
C(9)	19(1)	13(1)	20(1)	-3(1)	7(1)	0(1)
C(10)	24(1)	15(1)	24(1)	1(1)	11(1)	-2(1)
C(11)	29(1)	16(1)	21(1)	5(1)	6(1)	2(1)
C(12)	18(1)	18(1)	21(1)	2(1)	0(1)	1(1)
C(13)	18(1)	13(1)	20(1)	1(1)	6(1)	1(1)
C(14)	17(1)	21(1)	26(1)	-1(1)	7(1)	-3(1)
C(15)	21(1)	45(2)	36(1)	1(1)	12(1)	1(1)
C(16)	26(1)	29(1)	45(1)	-13(1)	2(1)	-9(1)
C(17)	17(1)	17(1)	25(1)	3(1)	4(1)	-1(1)
C(18)	22(1)	25(1)	36(1)	1(1)	11(1)	-1(1)
C(19)	22(1)	21(1)	32(1)	-1(1)	3(1)	-4(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for cain71_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	У	Z	U(eq)
H(1A)	8846	3578	3418	23
H(1B)	7651	2942	2792	23
H(3)	8674	856	3909	24
H(4)	8358	-270	5167	27
H(5)	7452	717	6190	30
H(6)	6905	2878	6001	26
H(10)	7839	7571	1511	24
H(11)	5900	7402	613	27
H(12)	4603	5971	1017	24
H(14)	9142	5753	3566	25
H(15A)	9778	5339	2226	50
H(15B)	10688	6279	2901	50
H(15C)	9759	6838	2007	50
H(16A)	9035	8393	3029	52
H(16B)	9950	7811	3922	52
H(16C)	8570	7858	3865	52
H(17)	5346	3741	2902	24
H(18A)	4394	5486	3350	40
H(18B)	3398	4465	2885	40
H(18C)	3599	5702	2318	40
H(19A)	3807	4023	1085	39
H(19B)	3774	2858	1767	39
H(19C)	4883	3031	1348	39

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx\ 10\ ³) for cain71_0m_a.

Table 1. Crystal data and structure refinement for c	ain79_0m_a_sq (Compound 3).		
Identification code	DYZ9		
Empirical formula	C27 H28 N P		
Formula weight	397.47		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.4342(5) Å	$\alpha = 97.641(2)^{\circ}$.	
	b = 10.7526(6) Å	$\beta = 103.063(2)^{\circ}$.	
	c = 14.1948(8) Å	$\gamma = 90.538(2)^{\circ}$.	
Volume	1241.83(12)Å ³	•	
Ζ	2		
Density (calculated)	1.063 Mg/m ³		
Absorption coefficient	0.122 mm ⁻¹		
F(000)	424		
Crystal size	0.26 x 0.25 x 0.22 mm ³		
Theta range for data collection	1.487 to 28.357°.		
Index ranges	-11<=h<=11, -14<=k<=14, -18<=l<=18		
Reflections collected	15194		
Independent reflections	6203 [R(int) = 0.0942]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.777 and 0.706		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6203 / 0 / 266		
Goodness-of-fit on F ²	0.986		
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.1434		
R indices (all data)	R1 = 0.0784, $wR2 = 0.1567$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.673 and -0.434 e.Å ⁻³		

	Х	у	Z	U(eq)
P(1)	6908(1)	5047(1)	7908(1)	18(1)
N(1)	8525(2)	4737(1)	7398(1)	17(1)
C(16)	10174(2)	5004(2)	7944(1)	17(1)
C(17)	11005(2)	6110(2)	7867(1)	19(1)
C(14)	6388(2)	3967(2)	6052(1)	19(1)
C(9)	5540(2)	4309(2)	6776(1)	18(1)
C(21)	10930(2)	4148(2)	8564(1)	21(1)
C(10)	3872(2)	4077(2)	6598(1)	22(1)
C(22)	10244(2)	7044(2)	7204(1)	21(1)
C(7)	6274(2)	7783(2)	7953(2)	25(1)
C(6)	6040(2)	9112(2)	8102(2)	28(1)
C(25)	10070(2)	2956(2)	8677(1)	26(1)
C(19)	13355(2)	5523(2)	9022(2)	30(1)
C(20)	12511(2)	4433(2)	9096(1)	28(1)
C(18)	12601(2)	6347(2)	8409(1)	24(1)
C(8)	6479(2)	6665(2)	7828(1)	22(1)
C(15)	8193(2)	4290(2)	6352(1)	22(1)
C(11)	3054(2)	3504(2)	5683(2)	26(1)
C(13)	5551(2)	3392(2)	5132(1)	25(1)
C(12)	3892(2)	3166(2)	4956(2)	27(1)
C(24)	10320(3)	8378(2)	7764(2)	30(1)
C(23)	11062(3)	7041(2)	6346(1)	29(1)
C(3)	5616(3)	11685(2)	8373(2)	48(1)
C(5)	6242(3)	9766(2)	9014(2)	49(1)
C(4)	6019(4)	11047(2)	9150(2)	55(1)
C(27)	9855(3)	2975(2)	9705(2)	51(1)
C(1)	5662(4)	9771(2)	7309(2)	65(1)
C(26)	11042(4)	1799(2)	8426(2)	70(1)
C(2)	5476(4)	11065(3)	7459(2)	74(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cain79_0m_a_sq. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-N(1)	1.6986(15)
P(1)-C(9)	1.8305(18)
P(1)-C(8)	1.7932(19)
N(1)-C(16)	1.437(2)
N(1)-C(15)	1.461(2)
C(16)-C(17)	1.404(2)
C(16)-C(21)	1.414(2)
C(17)-C(22)	1.516(2)
C(17)-C(18)	1.393(3)
C(14)-C(9)	1.393(3)
C(14)-C(15)	1.509(3)
C(14)-C(13)	1.395(3)
C(9)-C(10)	1.386(3)
C(21)-C(25)	1.511(3)
C(21)-C(20)	1.385(3)
С(10)-Н(10)	0.9500
C(10)-C(11)	1.384(3)
С(22)-Н(22)	1.0000
C(22)-C(24)	1.538(3)
C(22)-C(23)	1.528(3)
C(7)-C(6)	1.438(3)
C(7)-C(8)	1.212(3)
C(6)-C(5)	1.361(3)
C(6)-C(1)	1.389(3)
C(25)-H(25)	1.0000
C(25)-C(27)	1.509(3)
C(25)-C(26)	1.543(3)
C(19)-H(19)	0.9500
C(19)-C(20)	1.394(3)
C(19)-C(18)	1.383(3)
C(20)-H(20)	0.9500
C(18)-H(18)	0.9500
С(15)-Н(15А)	0.9900
C(15)-H(15B)	0.9900

Table 3. Bond lengths [Å] and angles [°] for cain79_0m_a_sq.

C(11)-H(11)	0.9500
C(11)-C(12)	1.389(3)
C(13)-H(13)	0.9500
C(13)-C(12)	1.378(3)
C(12)-H(12)	0.9500
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(3)-H(3)	0.9500
C(3)-C(4)	1.356(4)
C(3)-C(2)	1.357(4)
C(5)-H(5)	0.9500
C(5)-C(4)	1.386(3)
C(4)-H(4)	0.9500
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(1)-H(1)	0.9500
C(1)-C(2)	1.395(3)
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(2)-H(2)	0.9500
N(1)-P(1)-C(9)	89.64(8)
N(1)-P(1)-C(8)	106.70(8)
C(8)-P(1)-C(9)	99.89(8)
C(16)-N(1)-P(1)	121.93(11)
C(16)-N(1)-C(15)	120.02(14)
C(15)-N(1)-P(1)	117.82(12)
C(17)-C(16)-N(1)	119.93(15)
C(17)-C(16)-C(21)	120.99(16)
C(21)-C(16)-N(1)	119.08(16)

C(16)-C(17)-C(22)	122.57(16)
C(18)-C(17)-C(16)	118.68(16)
C(18)-C(17)-C(22)	118.74(17)
C(9)-C(14)-C(15)	114.70(16)
C(9)-C(14)-C(13)	119.80(17)
C(13)-C(14)-C(15)	125.48(17)
C(14)-C(9)-P(1)	111.26(14)
C(10)-C(9)-P(1)	127.91(15)
C(10)-C(9)-C(14)	120.84(17)
C(16)-C(21)-C(25)	122.58(16)
C(20)-C(21)-C(16)	118.10(17)
C(20)-C(21)-C(25)	119.31(16)
С(9)-С(10)-Н(10)	120.5
C(11)-C(10)-C(9)	118.92(18)
С(11)-С(10)-Н(10)	120.5
С(17)-С(22)-Н(22)	108.0
C(17)-C(22)-C(24)	111.66(15)
C(17)-C(22)-C(23)	110.89(15)
C(24)-C(22)-H(22)	108.0
C(23)-C(22)-H(22)	108.0
C(23)-C(22)-C(24)	110.20(15)
C(8)-C(7)-C(6)	179.7(2)
C(5)-C(6)-C(7)	121.7(2)
C(5)-C(6)-C(1)	118.1(2)
C(1)-C(6)-C(7)	120.1(2)
C(21)-C(25)-H(25)	108.8
C(21)-C(25)-C(26)	110.62(19)
C(27)-C(25)-C(21)	111.40(16)
C(27)-C(25)-H(25)	108.8
C(27)-C(25)-C(26)	108.5(2)
C(26)-C(25)-H(25)	108.8
C(20)-C(19)-H(19)	120.2
C(18)-C(19)-H(19)	120.2
C(18)-C(19)-C(20)	119.52(18)
C(21)-C(20)-C(19)	121.60(18)
C(21)-C(20)-H(20)	119.2

С(19)-С(20)-Н(20)	119.2
C(17)-C(18)-H(18)	119.4
C(19)-C(18)-C(17)	121.11(18)
C(19)-C(18)-H(18)	119.4
C(7)-C(8)-P(1)	168.38(18)
N(1)-C(15)-C(14)	105.40(15)
N(1)-C(15)-H(15A)	110.7
N(1)-C(15)-H(15B)	110.7
C(14)-C(15)-H(15A)	110.7
C(14)-C(15)-H(15B)	110.7
H(15A)-C(15)-H(15B)	108.8
С(10)-С(11)-Н(11)	119.8
C(10)-C(11)-C(12)	120.49(18)
С(12)-С(11)-Н(11)	119.8
С(14)-С(13)-Н(13)	120.4
C(12)-C(13)-C(14)	119.17(18)
С(12)-С(13)-Н(13)	120.4
С(11)-С(12)-Н(12)	119.6
C(13)-C(12)-C(11)	120.78(18)
С(13)-С(12)-Н(12)	119.6
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(4)-C(3)-H(3)	120.3
C(4)-C(3)-C(2)	119.4(2)
C(2)-C(3)-H(3)	120.3
C(6)-C(5)-H(5)	119.4

C(6)-C(5)-C(4)	121.3(2)
C(4)-C(5)-H(5)	119.4
C(3)-C(4)-C(5)	120.5(2)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-H(4)	119.8
C(25)-C(27)-H(27A)	109.5
C(25)-C(27)-H(27B)	109.5
С(25)-С(27)-Н(27С)	109.5
H(27A)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(6)-C(1)-H(1)	120.1
C(6)-C(1)-C(2)	119.9(3)
C(2)-C(1)-H(1)	120.1
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(3)-C(2)-C(1)	120.7(3)
C(3)-C(2)-H(2)	119.6
C(1)-C(2)-H(2)	119.6
$C(1)^{-}C(2)^{-}\Pi(2)$	117.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	18(1)	17(1)	20(1)	1(1)	4(1)	1(1)
N(1)	14(1)	18(1)	17(1)	-1(1)	1(1)	0(1)
C(16)	15(1)	18(1)	16(1)	-1(1)	3(1)	1(1)
C(17)	18(1)	19(1)	18(1)	-1(1)	6(1)	1(1)
C(14)	20(1)	13(1)	23(1)	3(1)	3(1)	2(1)
C(9)	21(1)	11(1)	21(1)	3(1)	0(1)	1(1)
C(21)	20(1)	21(1)	19(1)	1(1)	2(1)	2(1)
C(10)	22(1)	16(1)	28(1)	4(1)	7(1)	2(1)
C(22)	21(1)	18(1)	23(1)	3(1)	6(1)	0(1)
C(7)	16(1)	23(1)	34(1)	1(1)	8(1)	-1(1)
C(6)	22(1)	17(1)	46(1)	2(1)	9(1)	1(1)
C(25)	31(1)	18(1)	26(1)	4(1)	0(1)	1(1)
C(19)	17(1)	39(1)	29(1)	4(1)	-2(1)	-4(1)
C(20)	24(1)	34(1)	24(1)	7(1)	-2(1)	4(1)
C(18)	20(1)	26(1)	24(1)	0(1)	6(1)	-4(1)
C(8)	18(1)	21(1)	26(1)	-1(1)	6(1)	0(1)
C(15)	21(1)	23(1)	20(1)	-1(1)	3(1)	-2(1)
C(11)	18(1)	19(1)	35(1)	3(1)	-1(1)	-3(1)
C(13)	30(1)	20(1)	22(1)	-2(1)	5(1)	0(1)
C(12)	28(1)	21(1)	26(1)	-2(1)	-4(1)	-3(1)
C(24)	34(1)	21(1)	35(1)	2(1)	10(1)	0(1)
C(23)	34(1)	30(1)	26(1)	6(1)	9(1)	-2(1)
C(3)	50(2)	18(1)	78(2)	1(1)	21(1)	9(1)
C(5)	72(2)	25(1)	47(2)	0(1)	14(1)	5(1)
C(4)	75(2)	28(1)	60(2)	-12(1)	23(2)	2(1)
C(27)	66(2)	53(2)	33(1)	2(1)	16(1)	-30(1)
C(1)	108(3)	30(1)	53(2)	4(1)	9(2)	26(2)
C(26)	86(2)	30(1)	100(3)	-6(2)	43(2)	7(1)
C(2)	121(3)	31(1)	69(2)	14(1)	16(2)	31(2)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cain79_0m_a_sq. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	У	Ζ	U(eq)
H(10)	3300	4306	7095	26
H(22)	9072	6780	6934	25
H(25)	8971	2875	8219	31
H(19)	14442	5699	9390	35
H(20)	13032	3873	9521	33
H(18)	13180	7087	8356	28
H(15A)	8824	3541	6221	26
H(15B)	8483	4953	5991	26
H(11)	1910	3340	5551	31
H(13)	6118	3159	4632	30
H(12)	3314	2775	4332	32
H(24A)	9840	8361	8330	44
H(24B)	9711	8936	7333	44
H(24C)	11459	8686	7986	44
H(23A)	12208	7321	6592	44
H(23B)	10508	7612	5907	44
H(23C)	10995	6190	5990	44
H(3)	5432	12559	8468	58
H(5)	6541	9337	9567	58
H(4)	6150	11481	9793	66
H(27A)	10920	3112	10165	76
H(27B)	9360	2170	9767	76
H(27C)	9146	3655	9853	76
H(1)	5529	9342	6664	78
H(26A)	11204	1780	7762	105
H(26B)	10436	1033	8467	105
H(26C)	12103	1849	8890	105
H(2)	5250	11517	6915	89

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å^2x\ 10\ ^3) for cain79_0m_a_sq.

Table 1. Crystal data and structure refinement for cain83 0m a (Mixture of 4 and the Chloride). Identification code DYZ-24 Empirical formula C19 H23 Cl0.25 I0.75 N P Formula weight 400.40 Temperature 100.0 K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 21/c Unit cell dimensions $\alpha = 90^{\circ}$. a = 9.4221(5) Åb = 9.8317(8) Å $\beta = 101.724(3)^{\circ}$. c = 20.1049(12) Å $\gamma = 90^{\circ}$. Volume 1823.6(2) Å³ Ζ 4 Density (calculated) 1.458 Mg/m^3 Absorption coefficient 2.003 mm⁻¹ F(000) 836 Crystal color, size Yellow, 0.25 x 0.24 x 0.22 mm³ Theta range for data collection 2.069 to 28.345°. Index ranges -11<=h<=12, -13<=k<=11, -26<=l<=26 Reflections collected 16478 Independent reflections 4539 [R(int) = 0.0331] Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7457 and 0.6760 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4539 / 0 / 207 Goodness-of-fit on F² 1.156 Final R indices [I>2sigma(I)] R1 = 0.0282, wR2 = 0.0616R indices (all data) R1 = 0.0344, wR2 = 0.0635 Extinction coefficient n/a Largest diff. peak and hole 0.737 and -0.371 e.Å-3

	X	у	Z	U(eq)
I(1)	7724(1)	3940(1)	5006(1)	20(1)
Cl(1)	7701(7)	4151(5)	4899(3)	20(1)
P(1)	6370(1)	5413(1)	4005(1)	17(1)
N(1)	7468(2)	5664(2)	3464(1)	15(1)
C(1)	6860(2)	7061(2)	4385(1)	17(1)
C(2)	6252(3)	7727(2)	4875(1)	23(1)
C(3)	6743(3)	9030(2)	5074(1)	27(1)
C(4)	7820(3)	9647(2)	4802(1)	27(1)
C(5)	8436(3)	8970(2)	4323(1)	22(1)
C(6)	7936(2)	7681(2)	4112(1)	17(1)
C(7)	8439(2)	6849(2)	3578(1)	17(1)
C(8)	7474(2)	4820(2)	2879(1)	15(1)
C(9)	8603(2)	3881(2)	2885(1)	17(1)
C(10)	8576(3)	3100(2)	2304(1)	23(1)
C(11)	7466(3)	3214(2)	1742(1)	26(1)
C(12)	6357(3)	4135(2)	1747(1)	21(1)
C(13)	6347(2)	4973(2)	2307(1)	16(1)
C(14)	9810(2)	3664(2)	3500(1)	20(1)
C(15)	11283(3)	4012(3)	3341(1)	31(1)
C(16)	9805(3)	2201(2)	3758(1)	31(1)
C(17)	5111(2)	5968(2)	2280(1)	18(1)
C(18)	3738(3)	5195(3)	2354(1)	25(1)
C(19)	4823(3)	6822(2)	1629(1)	24(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cain83_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

I(1)-P(1)	2.5937(7)
Cl(1)-P(1)	2.329(5)
P(1)-N(1)	1.6657(17)
P(1)-C(1)	1.811(2)
N(1)-C(7)	1.470(3)
N(1)-C(8)	1.441(2)
C(1)-C(2)	1.398(3)
C(1)-C(6)	1.388(3)
C(2)-H(2)	0.9500
C(2)-C(3)	1.393(3)
C(3)-H(3)	0.9500
C(3)-C(4)	1.387(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.391(3)
C(5)-H(5)	0.9500
C(5)-C(6)	1.388(3)
C(6)-C(7)	1.501(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.407(3)
C(8)-C(13)	1.405(3)
C(9)-C(10)	1.393(3)
C(9)-C(14)	1.515(3)
C(10)-H(10)	0.9500
C(10)-C(11)	1.379(3)
С(11)-Н(11)	0.9500
C(11)-C(12)	1.384(3)
С(12)-Н(12)	0.9500
C(12)-C(13)	1.396(3)
C(13)-C(17)	1.514(3)
C(14)-H(14)	1.0000
C(14)-C(15)	1.525(3)
C(14)-C(16)	1.530(3)
C(15)-H(15A)	0.9800

Table 3. Bond lengths [Å] and angles [°] for cain83_0m_a.

C(15)-H(15B)	0.9800
С(15)-Н(15С)	0.9800
С(16)-Н(16А)	0.9800
C(16)-H(16B)	0.9800
С(16)-Н(16С)	0.9800
С(17)-Н(17)	1.0000
C(17)-C(18)	1.533(3)
C(17)-C(19)	1.533(3)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
N(1)-P(1)-I(1)	108.43(7)
N(1)-P(1)-Cl(1)	105.93(17)
N(1)-P(1)-C(1)	90.23(9)
C(1)-P(1)-I(1)	97.42(7)
C(1)-P(1)-Cl(1)	95.74(16)
C(7)-N(1)-P(1)	117.72(13)
C(8)-N(1)-P(1)	123.64(14)
C(8)-N(1)-C(7)	118.59(16)
C(2)-C(1)-P(1)	127.62(18)
C(6)-C(1)-P(1)	111.72(15)
C(6)-C(1)-C(2)	120.6(2)
C(1)-C(2)-H(2)	120.9
C(3)-C(2)-C(1)	118.2(2)
C(3)-C(2)-H(2)	120.9
C(2)-C(3)-H(3)	119.5
C(4)-C(3)-C(2)	121.1(2)
C(4)-C(3)-H(3)	119.5
C(3)-C(4)-H(4)	119.8
C(3)-C(4)-C(5)	120.4(2)
C(5)-C(4)-H(4)	119.8
C(4)-C(5)-H(5)	120.5

C(6)-C(5)-C(4)	119.0(2)
C(6)-C(5)-H(5)	120.5
C(1)-C(6)-C(7)	113.95(18)
C(5)-C(6)-C(1)	120.7(2)
C(5)-C(6)-C(7)	125.3(2)
N(1)-C(7)-C(6)	105.45(16)
N(1)-C(7)-H(7A)	110.7
N(1)-C(7)-H(7B)	110.7
C(6)-C(7)-H(7A)	110.7
C(6)-C(7)-H(7B)	110.7
H(7A)-C(7)-H(7B)	108.8
C(9)-C(8)-N(1)	119.95(19)
C(13)-C(8)-N(1)	118.64(18)
C(13)-C(8)-C(9)	121.39(18)
C(8)-C(9)-C(14)	122.69(18)
C(10)-C(9)-C(8)	118.0(2)
C(10)-C(9)-C(14)	119.28(19)
C(9)-C(10)-H(10)	119.2
C(11)-C(10)-C(9)	121.5(2)
С(11)-С(10)-Н(10)	119.2
С(10)-С(11)-Н(11)	120.1
C(10)-C(11)-C(12)	119.7(2)
C(12)-C(11)-H(11)	120.1
С(11)-С(12)-Н(12)	119.3
C(11)-C(12)-C(13)	121.3(2)
C(13)-C(12)-H(12)	119.3
C(8)-C(13)-C(17)	123.07(18)
C(12)-C(13)-C(8)	117.99(19)
C(12)-C(13)-C(17)	118.9(2)
C(9)-C(14)-H(14)	108.1
C(9)-C(14)-C(15)	111.21(19)
C(9)-C(14)-C(16)	110.8(2)
C(15)-C(14)-H(14)	108.1
C(15)-C(14)-C(16)	110.3(2)
C(16)-C(14)-H(14)	108.1
С(14)-С(15)-Н(15А)	109.5

C(14)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
С(13)-С(17)-Н(17)	108.0
C(13)-C(17)-C(18)	109.54(18)
C(13)-C(17)-C(19)	112.68(17)
С(18)-С(17)-Н(17)	108.0
С(19)-С(17)-Н(17)	108.0
C(19)-C(17)-C(18)	110.41(19)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
С(17)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I(1)	30(1)	17(1)	12(1)	4(1)	3(1)	-5(1)
Cl(1)	30(1)	17(1)	12(1)	4(1)	3(1)	-5(1)
P(1)	17(1)	20(1)	16(1)	-3(1)	6(1)	-4(1)
N(1)	16(1)	15(1)	13(1)	-1(1)	4(1)	-2(1)
C(1)	18(1)	17(1)	14(1)	-2(1)	-1(1)	1(1)
C(2)	22(1)	29(1)	17(1)	-2(1)	2(1)	5(1)
C(3)	31(1)	26(1)	21(1)	-7(1)	-2(1)	11(1)
C(4)	38(2)	16(1)	21(1)	-2(1)	-6(1)	4(1)
C(5)	29(1)	16(1)	19(1)	3(1)	-2(1)	-1(1)
C(6)	20(1)	15(1)	14(1)	2(1)	-2(1)	2(1)
C(7)	18(1)	16(1)	17(1)	1(1)	4(1)	-2(1)
C(8)	18(1)	14(1)	14(1)	0(1)	5(1)	-2(1)
C(9)	19(1)	16(1)	18(1)	2(1)	6(1)	-1(1)
C(10)	27(1)	21(1)	24(1)	-1(1)	11(1)	7(1)
C(11)	38(2)	23(1)	19(1)	-5(1)	10(1)	5(1)
C(12)	27(1)	21(1)	15(1)	0(1)	3(1)	0(1)
C(13)	18(1)	15(1)	16(1)	1(1)	5(1)	0(1)
C(14)	18(1)	19(1)	24(1)	2(1)	5(1)	2(1)
C(15)	21(1)	36(1)	37(1)	-3(1)	9(1)	0(1)
C(16)	29(1)	24(1)	36(1)	9(1)	-1(1)	3(1)
C(17)	19(1)	17(1)	17(1)	-1(1)	0(1)	2(1)
C(18)	21(1)	28(1)	26(1)	3(1)	4(1)	1(1)
C(19)	27(1)	22(1)	22(1)	5(1)	1(1)	3(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for cain83_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(2)	5523	7302	5067	28
H(3)	6333	9504	5401	32
H(4)	8139	10536	4944	32
H(5)	9187	9384	4142	27
H(7A)	8367	7380	3154	20
H(7B)	9457	6558	3737	20
H(10)	9340	2474	2295	28
H(11)	7462	2663	1354	31
H(12)	5587	4199	1361	26
H(14)	9637	4286	3869	24
H(15A)	11490	3393	2991	46
H(15B)	12035	3915	3754	46
H(15C)	11272	4951	3177	46
H(16A)	10099	1582	3428	46
H(16B)	8827	1962	3816	46
H(16C)	10485	2121	4195	46
H(17)	5374	6601	2675	22
H(18A)	3485	4536	1983	38
H(18B)	2938	5840	2336	38
H(18C)	3914	4715	2790	38
H(19A)	5726	7260	1572	37
H(19B)	4097	7520	1660	37
H(19C)	4464	6232	1238	37

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx 10 ³) for cain83_0m_a.

Table 1. Crystal data and structure refinement for	cain89 0m a (Compound 5-p-N	∕IeC ₆ H₄).
Identification code	MC 4-49 F2	
Empirical formula	C26 H30 N P	
Formula weight	387.48	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 10.1766(2) Å	<i>α</i> = 90°.
	b = 20.7413(4) Å	$\beta = 109.8390(10)^{\circ}$.
	c = 11.3263(2) Å	$\gamma = 90^{\circ}$.
Volume	2248.82(7)Å ³	•
Ζ	4	
Density (calculated)	1.144 Mg/m ³	
Absorption coefficient	1.140 mm ⁻¹	
F(000)	832	
Crystal size	0.32 x 0.21 x 0.14 mm ³	
Theta range for data collection	4.263 to 68.474°.	
Index ranges	-12<=h<=11, -25<=k<=24, -13	<=]<=]]
Reflections collected	12696	
Independent reflections	4100 [R(int) = 0.0221]	
Completeness to theta = 67.679°	99.5 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.7531 and 0.6524	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4100 / 0 / 258	
Goodness-of-fit on F ²	1.059	
Final R indices [I>2sigma(I)]	R1 = 0.0350, wR2 = 0.0929	
R indices (all data)	R1 = 0.0377, wR2 = 0.0954	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.354 and -0.264 e.Å ⁻³	

	X	У	Z	U(eq)
P(1)	5233(1)	6732(1)	5305(1)	16(1)
N(1)	4284(1)	6903(1)	6251(1)	16(1)
C(8)	6540(1)	6129(1)	6160(1)	17(1)
C(5)	6473(1)	8369(1)	7253(1)	21(1)
C(6)	5833(1)	7793(1)	6742(1)	18(1)
C(2)	7250(1)	7735(1)	5408(1)	21(1)
C(16)	1761(1)	6832(1)	5115(1)	20(1)
C(15)	2957(1)	6608(1)	6077(1)	17(1)
C(21)	1814(1)	7399(1)	4286(1)	22(1)
C(1)	6224(1)	7474(1)	5828(1)	17(1)
C(9)	7453(1)	6203(1)	7390(1)	22(1)
C(7)	4687(1)	7465(1)	7074(1)	19(1)
C(20)	2868(1)	6111(1)	6887(1)	21(1)
C(11)	8341(1)	5121(1)	7387(1)	25(1)
C(13)	6559(1)	5547(1)	5554(1)	22(1)
C(24)	4137(1)	5894(1)	7980(1)	23(1)
C(4)	7488(1)	8630(1)	6826(1)	24(1)
C(12)	7450(1)	5048(1)	6154(1)	26(1)
C(3)	7870(1)	8316(1)	5907(1)	24(1)
C(17)	491(1)	6525(1)	4946(1)	26(1)
C(10)	8331(1)	5706(1)	7990(1)	25(1)
C(19)	1571(2)	5823(1)	6684(1)	30(1)
C(26)	3885(2)	5949(1)	9231(1)	36(1)
C(22)	1476(2)	7194(1)	2920(1)	31(1)
C(23)	838(2)	7942(1)	4376(2)	38(1)
C(25)	4588(2)	5212(1)	7789(1)	31(1)
C(18)	395(2)	6023(1)	5716(1)	33(1)
C(14)	9290(2)	4581(1)	8064(2)	37(1)

Table 3. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cain89_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-N(1)	1.7058(11)
P(1)-C(8)	1.8433(13)
P(1)-C(1)	1.8263(13)
N(1)-C(15)	1.4335(16)
N(1)-C(7)	1.4608(16)
C(8)-C(9)	1.3963(18)
C(8)-C(13)	1.3920(18)
C(5)-H(5)	0.9500
C(5)-C(6)	1.3907(18)
C(5)-C(4)	1.390(2)
C(6)-C(1)	1.3945(18)
C(6)-C(7)	1.5043(17)
C(2)-H(2)	0.9500
C(2)-C(1)	1.3946(18)
C(2)-C(3)	1.3875(19)
C(16)-C(15)	1.4084(18)
C(16)-C(21)	1.5180(18)
C(16)-C(17)	1.3940(19)
C(15)-C(20)	1.4038(18)
C(21)-H(21)	1.0000
C(21)-C(22)	1.5266(19)
C(21)-C(23)	1.527(2)
C(9)-H(9)	0.9500
C(9)-C(10)	1.3830(19)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(20)-C(24)	1.5220(18)
C(20)-C(19)	1.3962(19)
C(11)-C(12)	1.392(2)
C(11)-C(10)	1.393(2)
C(11)-C(14)	1.5076(19)
С(13)-Н(13)	0.9500
C(13)-C(12)	1.391(2)
C(24)-H(24)	1.0000

Table 4. Bond lengths [Å] and angles [°] for cain89_0m_a.
C(24)-C(26)	1.528(2)
C(24)-C(25)	1.525(2)
C(4)-H(4)	0.9500
C(4)-C(3)	1.389(2)
С(12)-Н(12)	0.9500
C(3)-H(3)	0.9500
С(17)-Н(17)	0.9500
C(17)-C(18)	1.383(2)
C(10)-H(10)	0.9500
C(19)-H(19)	0.9500
C(19)-C(18)	1.384(2)
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(18)-H(18)	0.9500
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
N(1)-P(1)-C(8)	105.85(5)
N(1)-P(1)-C(1)	89.35(5)
C(1)-P(1)-C(8)	100.44(5)
C(15)-N(1)-P(1)	122.16(8)
C(15)-N(1)-C(7)	118.37(10)
C(7)-N(1)-P(1)	118.10(8)
C(9)-C(8)-P(1)	124.49(10)
C(13)-C(8)-P(1)	117.26(10)

C(13)-C(8)-C(9)	118.15(12)
C(6)-C(5)-H(5)	120.4
C(4)-C(5)-H(5)	120.4
C(4)-C(5)-C(6)	119.18(13)
C(5)-C(6)-C(1)	120.29(12)
C(5)-C(6)-C(7)	125.30(12)
C(1)-C(6)-C(7)	114.40(11)
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-H(2)	120.4
C(3)-C(2)-C(1)	119.17(12)
C(15)-C(16)-C(21)	122.05(11)
C(17)-C(16)-C(15)	118.29(12)
C(17)-C(16)-C(21)	119.65(12)
C(16)-C(15)-N(1)	119.50(11)
C(20)-C(15)-N(1)	119.36(11)
C(20)-C(15)-C(16)	121.13(12)
C(16)-C(21)-H(21)	107.7
C(16)-C(21)-C(22)	111.56(11)
C(16)-C(21)-C(23)	111.68(11)
С(22)-С(21)-Н(21)	107.7
C(22)-C(21)-C(23)	110.19(12)
C(23)-C(21)-H(21)	107.7
C(6)-C(1)-P(1)	111.97(9)
C(6)-C(1)-C(2)	120.31(12)
C(2)-C(1)-P(1)	127.71(10)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-C(8)	120.53(12)
C(10)-C(9)-H(9)	119.7
N(1)-C(7)-C(6)	105.89(10)
N(1)-C(7)-H(7A)	110.6
N(1)-C(7)-H(7B)	110.6
C(6)-C(7)-H(7A)	110.6
C(6)-C(7)-H(7B)	110.6
H(7A)-C(7)-H(7B)	108.7
C(15)-C(20)-C(24)	121.62(12)
C(19)-C(20)-C(15)	118.32(12)

C(19)-C(20)-C(24)	120.04(12)
C(12)-C(11)-C(10)	118.38(12)
C(12)-C(11)-C(14)	121.11(13)
C(10)-C(11)-C(14)	120.50(13)
C(8)-C(13)-H(13)	119.4
C(12)-C(13)-C(8)	121.29(12)
С(12)-С(13)-Н(13)	119.4
C(20)-C(24)-H(24)	107.4
C(20)-C(24)-C(26)	111.66(12)
C(20)-C(24)-C(25)	111.87(12)
C(26)-C(24)-H(24)	107.4
C(25)-C(24)-H(24)	107.4
C(25)-C(24)-C(26)	110.74(12)
C(5)-C(4)-H(4)	119.7
C(3)-C(4)-C(5)	120.56(12)
C(3)-C(4)-H(4)	119.7
С(11)-С(12)-Н(12)	119.8
C(13)-C(12)-C(11)	120.31(12)
С(13)-С(12)-Н(12)	119.8
C(2)-C(3)-C(4)	120.48(12)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
С(16)-С(17)-Н(17)	119.4
C(18)-C(17)-C(16)	121.18(13)
C(18)-C(17)-H(17)	119.4
C(9)-C(10)-C(11)	121.31(13)
C(9)-C(10)-H(10)	119.3
С(11)-С(10)-Н(10)	119.3
C(20)-C(19)-H(19)	119.4
C(18)-C(19)-C(20)	121.13(13)
C(18)-C(19)-H(19)	119.4
C(24)-C(26)-H(26A)	109.5
C(24)-C(26)-H(26B)	109.5
C(24)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5

H(26B)-C(26)-H(26C)	109.5
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(21)-C(23)-H(23A)	109.5
C(21)-C(23)-H(23B)	109.5
C(21)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(17)-C(18)-C(19)	119.89(13)
C(17)-C(18)-H(18)	120.1
C(19)-C(18)-H(18)	120.1
C(11)-C(14)-H(14A)	109.5
C(11)-C(14)-H(14B)	109.5
C(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

Symmetry transformations used to generate equivalent atoms:

U	U ¹¹	U ²² U ³³ U	U ²³ U	¹³ U ¹²
14	4(1)	18(1) 14(1) -	1(1) 3(1) -1(1)
14	4(1)	17(1) 18(1) -2	2(1) 4(1) -2(1)
15	5(1)	17(1) 21(1) -	1(1) 7(1) -1(1)
19	9(1)	19(1) 23(1) -	1(1) 4(1) -1(1)
15	5(1)	17(1) 18(1) 3	3(1) 2(1) 1(1)
17	7(1)	25(1) 20(1) 3	3(1) 6(1) 2(1)
17	7(1)	26(1) 16(1) -2	2(1) 5(1) -1(1)
15	5(1)	20(1) 16(1) -2	2(1) 5(1) -2(1)
17	7(1)	26(1) 21(1) 4	4(1) 4(1) 1(1)
14	4(1)	17(1) 17(1) 3	3(1) 1(1) 1(1)
23	3(1)	18(1) 24(1) -4	4(1) 5(1) 1(1)
18	8(1)	20(1) 18(1) -3	3(1) 7(1) -3(1)
23	3(1)	22(1) 18(1) -	1(1) 6(1) -4(1)
22	2(1)	18(1) 36(1) 4	4(1) 13	(1) 2(1)
20	0(1)	22(1) 24(1) -:	5(1) 8(1) -3(1)
26	6(1)	20(1) 20(1) 3	3(1) 4(1) -2(1)
20	0(1)	18(1) 31(1) 1	l(1) 3(1) -4(1)
28	8(1)	16(1) 36(1) -:	5(1) 15	(1) -1(1)
16	6(1)	25(1) 29(1) 7	7(1) 7(1) -2(1)
16	6(1)	41(1) 20(1) 1	3(1)	1) -4(1)
23	3(1)	24(1) 24(1) 1	1(1) 2(1) 2(1)
30	0(1)	33(1) 25(1) 5	5(1) 9(1) -12(1)
41	1(1)	43(1) 20(1) 0)(1) 5(1) 9(1)
30	0(1)	40(1) 22(1) 4	4(1) 9(1) -7(1)
41	1(1)	40(1) 38(1) 1	5(1) 190	(1) 18(1)
36	6(1)	24(1) 33(1) 1	l(1) 11	(1) -1(1)
23	3(1)	46(1) 28(1) 0)(1) 8(1) -16(1)
34	4(1)	25(1) 50(1) 7	7(1) 12	(1) 10(1)
23 34	3(1) 4(1)	$\begin{array}{cccc} 46(1) & 28(1) & 0 \\ 25(1) & 50(1) & 7 \\ \end{array}$)(1) 7(1)	8(12(

Table 5. Anisotropic displacement parameters (Å²x 10³) for cain89_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(5)	6219	8583	7886	26
H(2)	7521	7518	4789	25
H(21)	2789	7572	4589	26
H(9)	7470	6598	7819	27
H(7A)	5027	7330	7966	22
H(7B)	3882	7759	6935	22
H(13)	5952	5489	4714	26
H(24)	4926	6190	8017	28
H(4)	7924	9025	7164	29
H(12)	7451	4657	5720	31
H(3)	8560	8501	5619	29
H(17)	-323	6664	4290	32
H(10)	8940	5764	8829	30
H(19)	1493	5483	7219	35
H(26A)	3615	6392	9344	54
H(26B)	4743	5836	9918	54
H(26C)	3135	5653	9235	54
H(22A)	2122	6853	2871	46
H(22B)	1574	7565	2421	46
H(22C)	515	7032	2591	46
H(23A)	-129	7788	4069	57
H(23B)	935	8308	3864	57
H(23C)	1083	8078	5253	57
H(25A)	3825	4910	7725	47
H(25B)	5412	5092	8504	47
H(25C)	4816	5195	7015	47
H(18)	-477	5816	5581	39
H(14A)	8850	4344	8580	56
H(14B)	10183	4760	8604	56
H(14C)	9453	4288	7450	56

Table 6. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for cain89_0m_a.

Table 1. Crystal data and structure refinement for cain94_0m_a (Compound 6-Pd₂-(P(*t*-Bu)₃)₂). Identification code MC 5-17 Empirical formula C43 H77 I N P3 Pd2 Formula weight 1040.66 Temperature 100.0 K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 21/n Unit cell dimensions a = 13.6610(2) Å $\alpha = 90^{\circ}$ b = 23.3921(3) Å $\beta = 106.8940(10)^{\circ}$. c = 15.1918(2) Å $\gamma = 90^{\circ}$. Volume 4645.17(11) Å³ Ζ 4 Density (calculated) 1.488 Mg/m^3 Absorption coefficient 1.571 mm⁻¹ F(000) 2128 0.29 x 0.27 x 0.17 mm³ Crystal size Theta range for data collection 1.649 to 28.312°. Index ranges -16<=h<=18, -30<=k<=31, -18<=l<=20 Reflections collected 38348 Independent reflections 11515 [R(int) = 0.0594]Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents 0.7457 and 0.6555 Max. and min. transmission Refinement method Full-matrix least-squares on F² Data / restraints / parameters 11515 / 0 / 472 Goodness-of-fit on F² 1.039 Final R indices [I>2sigma(I)] R1 = 0.0313, wR2 = 0.0712R indices (all data) R1 = 0.0399, wR2 = 0.0769 Extinction coefficient n/a Largest diff. peak and hole 0.831 and -0.510 e.Å-3

	Х	у	Z	U(eq)
I(1)	7200(1)	5050(1)	8790(1)	14(1)
Pd(1)	6432(1)	6133(1)	8264(1)	10(1)
Pd(2)	7834(1)	5717(1)	7575(1)	9(1)
P(1)	6912(1)	6495(1)	7082(1)	10(1)
P(3)	9395(1)	5494(1)	7301(1)	11(1)
P(2)	5769(1)	6680(1)	9254(1)	13(1)
N(1)	6149(2)	6670(1)	6016(2)	12(1)
C(8)	5559(2)	6282(1)	5323(2)	13(1)
C(13)	5802(2)	6226(1)	4481(2)	14(1)
C(28)	5375(2)	7445(1)	8847(2)	17(1)
C(7)	6021(2)	7290(1)	5816(2)	16(1)
C(9)	4718(2)	5988(1)	5459(2)	14(1)
C(1)	7426(2)	7211(1)	7215(2)	12(1)
C(40)	9195(2)	4836(1)	6530(2)	14(1)
C(10)	4165(2)	5618(1)	4769(2)	18(1)
C(32)	9924(2)	6096(1)	6714(2)	13(1)
C(43)	8580(2)	5016(1)	5555(2)	19(1)
C(17)	6670(2)	6544(1)	4242(2)	17(1)
C(41)	10162(2)	4511(1)	6482(2)	21(1)
C(6)	6867(2)	7580(1)	6532(2)	14(1)
C(42)	8495(2)	4417(1)	6852(2)	19(1)
C(12)	5211(2)	5859(1)	3808(2)	17(1)
C(11)	4401(2)	5548(1)	3954(2)	18(1)
C(2)	8240(2)	7419(1)	7924(2)	15(1)
C(35)	9015(2)	6366(1)	5980(2)	18(1)
C(4)	7919(2)	8363(1)	7269(2)	21(1)
C(36)	10418(2)	5321(1)	8419(2)	18(1)
C(20)	6865(2)	6726(1)	10378(2)	20(1)
C(3)	8484(2)	7996(1)	7951(2)	20(1)
C(33)	10740(2)	5923(1)	6247(2)	19(1)
C(38)	11526(2)	5297(1)	8365(2)	22(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for cain94_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(21)	7874(2)	6830(1)	10137(2)	25(1)
C(24)	4622(2)	6340(1)	9540(2)	22(1)
C(19)	6260(2)	7036(1)	3551(2)	22(1)
C(14)	4305(2)	6092(1)	6277(2)	15(1)
C(29)	6331(2)	7795(1)	8886(2)	21(1)
C(39)	10184(2)	4737(1)	8790(2)	21(1)
C(37)	10347(2)	5769(1)	9140(2)	23(1)
C(5)	7110(2)	8161(1)	6554(2)	19(1)
C(31)	4764(2)	7770(1)	9386(2)	24(1)
C(15)	4083(2)	5538(1)	6720(2)	22(1)
C(34)	10365(2)	6578(1)	7408(2)	21(1)
C(30)	4757(2)	7427(1)	7825(2)	23(1)
C(18)	7303(2)	6148(1)	3818(2)	21(1)
C(25)	4770(3)	5684(1)	9559(3)	27(1)
C(16)	3338(2)	6462(1)	5959(2)	22(1)
C(23)	6768(2)	7188(1)	11078(2)	26(1)
C(26)	4423(3)	6524(1)	10447(3)	31(1)
C(27)	3652(2)	6457(1)	8753(3)	31(1)
C(22)	7011(3)	6143(1)	10875(2)	29(1)

2.7678(2)
2.7441(2)
2.6215(3)
2.2491(7)
2.3494(7)
2.2157(6)
2.3467(7)
1.701(2)
1.804(2)
1.906(3)
1.915(3)
1.903(3)
1.919(3)
1.919(3)
1.916(3)
1.445(3)
1.483(3)
1.417(4)
1.405(4)
1.530(4)
1.398(4)
1.528(4)
1.531(4)
1.536(4)
0.9900
0.9900
1.499(4)
1.399(4)
1.526(4)
1.394(4)
1.392(4)
1.534(4)
1.544(4)
1.545(4)

Table 3. Bond lengths [Å] and angles [°] for cain94_0m_a.

C(10)-H(10)	0.9500
C(10)-C(11)	1.377(4)
C(32)-C(35)	1.543(4)
C(32)-C(33)	1.539(4)
C(32)-C(34)	1.541(4)
C(43)-H(43A)	0.9800
C(43)-H(43B)	0.9800
C(43)-H(43C)	0.9800
С(17)-Н(17)	1.0000
C(17)-C(19)	1.547(4)
C(17)-C(18)	1.531(4)
C(41)-H(41A)	0.9800
C(41)-H(41B)	0.9800
C(41)-H(41C)	0.9800
C(6)-C(5)	1.397(3)
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
С(12)-Н(12)	0.9500
C(12)-C(11)	1.395(4)
С(11)-Н(11)	0.9500
C(2)-H(2)	0.9500
C(2)-C(3)	1.387(3)
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(4)-H(4)	0.9500
C(4)-C(3)	1.393(4)
C(4)-C(5)	1.388(4)
C(36)-C(38)	1.540(4)
C(36)-C(39)	1.546(4)
C(36)-C(37)	1.539(4)
C(20)-C(21)	1.545(4)
C(20)-C(23)	1.547(4)
C(20)-C(22)	1.543(4)
C(3)-H(3)	0.9500

	0.9800
C(33)-H(33B)	0.9800
С(33)-Н(33С)	0.9800
C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(24)-C(25)	1.549(4)
C(24)-C(26)	1.541(4)
C(24)-C(27)	1.530(5)
С(19)-Н(19А)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800
C(14)-H(14)	1.0000
C(14)-C(15)	1.529(4)
C(14)-C(16)	1.536(4)
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(39)-H(39A)	0.9800
C(39)-H(39B)	0.9800
C(39)-H(39C)	0.9800
C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800
С(37)-Н(37С)	0.9800
C(5)-H(5)	0.9500
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
С(31)-Н(31С)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800

C(34)-H(34C)	0.9800
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
Pd(2)-I(1)-Pd(1)	56.795(6)
Pd(2)-Pd(1)-I(1)	61.146(6)
P(1)-Pd(1)-I(1)	113.708(17)
P(1)-Pd(1)-Pd(2)	53.457(17)
P(1)-Pd(1)-P(2)	124.20(2)
P(2)-Pd(1)-I(1)	119.846(19)
P(2)-Pd(1)-Pd(2)	156.989(19)
Pd(1)-Pd(2)-I(1)	62.059(7)
P(1)-Pd(2)-I(1)	115.765(19)
P(1)-Pd(2)-Pd(1)	54.638(18)

P(1)-Pd(2)-P(3)	125.40(2)
P(3)-Pd(2)-I(1)	118.288(17)
P(3)-Pd(2)-Pd(1)	163.728(19)
Pd(2)-P(1)-Pd(1)	71.90(2)
N(1)-P(1)-Pd(1)	127.58(8)
N(1)-P(1)-Pd(2)	130.52(8)
N(1)-P(1)-C(1)	89.72(11)
C(1)-P(1)-Pd(1)	117.04(9)
C(1)-P(1)-Pd(2)	124.05(9)
C(40)-P(3)-Pd(2)	108.24(8)
C(40)-P(3)-C(32)	108.26(12)
C(32)-P(3)-Pd(2)	113.81(8)
C(36)-P(3)-Pd(2)	111.02(9)
C(36)-P(3)-C(40)	108.29(12)
C(36)-P(3)-C(32)	107.06(12)
C(28)-P(2)-Pd(1)	115.20(9)
C(28)-P(2)-C(20)	107.93(13)
C(20)-P(2)-Pd(1)	104.70(9)
C(24)-P(2)-Pd(1)	114.37(9)
C(24)-P(2)-C(28)	106.78(12)
C(24)-P(2)-C(20)	107.45(14)
C(8)-N(1)-P(1)	126.95(16)
C(8)-N(1)-C(7)	117.2(2)
C(7)-N(1)-P(1)	115.65(17)
C(13)-C(8)-N(1)	119.2(2)
C(9)-C(8)-N(1)	120.5(2)
C(9)-C(8)-C(13)	120.2(2)
C(8)-C(13)-C(17)	124.8(2)
C(12)-C(13)-C(8)	118.6(2)
C(12)-C(13)-C(17)	116.6(2)
C(29)-C(28)-P(2)	109.29(19)
C(29)-C(28)-C(31)	107.8(2)
C(29)-C(28)-C(30)	105.4(2)
C(31)-C(28)-P(2)	115.8(2)
C(31)-C(28)-C(30)	109.2(2)
C(30)-C(28)-P(2)	108.75(18)

N(1)-C(7)-H(7A)	110.6
N(1)-C(7)-H(7B)	110.6
N(1)-C(7)-C(6)	105.9(2)
H(7A)-C(7)-H(7B)	108.7
C(6)-C(7)-H(7A)	110.6
C(6)-C(7)-H(7B)	110.6
C(8)-C(9)-C(14)	123.6(2)
C(10)-C(9)-C(8)	118.6(3)
C(10)-C(9)-C(14)	117.5(2)
C(6)-C(1)-P(1)	112.32(19)
C(2)-C(1)-P(1)	127.5(2)
C(2)-C(1)-C(6)	120.1(2)
C(43)-C(40)-P(3)	108.21(17)
C(43)-C(40)-C(41)	109.0(2)
C(43)-C(40)-C(42)	105.3(2)
C(41)-C(40)-P(3)	117.04(19)
C(41)-C(40)-C(42)	108.6(2)
C(42)-C(40)-P(3)	108.05(18)
C(9)-C(10)-H(10)	119.0
C(11)-C(10)-C(9)	122.0(3)
С(11)-С(10)-Н(10)	119.0
C(35)-C(32)-P(3)	107.73(17)
C(33)-C(32)-P(3)	116.34(17)
C(33)-C(32)-C(35)	108.3(2)
C(33)-C(32)-C(34)	108.4(2)
C(34)-C(32)-P(3)	110.12(19)
C(34)-C(32)-C(35)	105.5(2)
C(40)-C(43)-H(43A)	109.5
C(40)-C(43)-H(43B)	109.5
C(40)-C(43)-H(43C)	109.5
H(43A)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43C)	109.5
H(43B)-C(43)-H(43C)	109.5
С(13)-С(17)-Н(17)	108.4
C(13)-C(17)-C(19)	111.7(2)
C(13)-C(17)-C(18)	112.1(2)

С(19)-С(17)-Н(17)	108.4
С(18)-С(17)-Н(17)	108.4
C(18)-C(17)-C(19)	107.6(2)
C(40)-C(41)-H(41A)	109.5
C(40)-C(41)-H(41B)	109.5
C(40)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
C(1)-C(6)-C(7)	113.6(2)
C(1)-C(6)-C(5)	120.6(3)
C(5)-C(6)-C(7)	125.8(2)
C(40)-C(42)-H(42A)	109.5
C(40)-C(42)-H(42B)	109.5
C(40)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
С(13)-С(12)-Н(12)	119.3
C(11)-C(12)-C(13)	121.4(3)
С(11)-С(12)-Н(12)	119.3
C(10)-C(11)-C(12)	119.0(3)
С(10)-С(11)-Н(11)	120.5
С(12)-С(11)-Н(11)	120.5
C(1)-C(2)-H(2)	120.2
C(3)-C(2)-C(1)	119.6(3)
C(3)-C(2)-H(2)	120.2
C(32)-C(35)-H(35A)	109.5
C(32)-C(35)-H(35B)	109.5
С(32)-С(35)-Н(35С)	109.5
H(35A)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(3)-C(4)-H(4)	119.5
C(5)-C(4)-H(4)	119.5
C(5)-C(4)-C(3)	121.0(2)

C(38)-C(36)-P(3)	116.0(2)
C(38)-C(36)-C(39)	107.3(2)
C(39)-C(36)-P(3)	109.68(19)
C(37)-C(36)-P(3)	107.95(18)
C(37)-C(36)-C(38)	109.3(2)
C(37)-C(36)-C(39)	106.3(2)
C(21)-C(20)-P(2)	108.5(2)
C(21)-C(20)-C(23)	108.3(2)
C(23)-C(20)-P(2)	116.8(2)
C(22)-C(20)-P(2)	110.0(2)
C(22)-C(20)-C(21)	104.9(3)
C(22)-C(20)-C(23)	107.8(2)
C(2)-C(3)-C(4)	120.1(3)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-H(3)	120.0
C(32)-C(33)-H(33A)	109.5
C(32)-C(33)-H(33B)	109.5
C(32)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5
C(36)-C(38)-H(38A)	109.5
C(36)-C(38)-H(38B)	109.5
C(36)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(20)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
C(20)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(25)-C(24)-P(2)	107.69(19)
C(26)-C(24)-P(2)	117.1(2)
C(26)-C(24)-C(25)	108.5(3)

C(27)-C(24)-P(2)	109.1(2)
C(27)-C(24)-C(25)	105.7(2)
C(27)-C(24)-C(26)	108.2(3)
С(17)-С(19)-Н(19А)	109.5
С(17)-С(19)-Н(19В)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(9)-C(14)-H(14)	108.1
C(9)-C(14)-C(15)	113.0(2)
C(9)-C(14)-C(16)	108.7(2)
C(15)-C(14)-H(14)	108.1
C(15)-C(14)-C(16)	110.7(2)
C(16)-C(14)-H(14)	108.1
C(28)-C(29)-H(29A)	109.5
C(28)-C(29)-H(29B)	109.5
C(28)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(36)-C(39)-H(39A)	109.5
C(36)-C(39)-H(39B)	109.5
C(36)-C(39)-H(39C)	109.5
H(39A)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
C(36)-C(37)-H(37A)	109.5
C(36)-C(37)-H(37B)	109.5
С(36)-С(37)-Н(37С)	109.5
H(37A)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5
C(6)-C(5)-H(5)	120.7
C(4)-C(5)-C(6)	118.6(3)
C(4)-C(5)-H(5)	120.7

C(28)-C(31)-H(31A)	109.5
C(28)-C(31)-H(31B)	109.5
C(28)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(32)-C(34)-H(34A)	109.5
C(32)-C(34)-H(34B)	109.5
C(32)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(28)-C(30)-H(30A)	109.5
C(28)-C(30)-H(30B)	109.5
C(28)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(20)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
C(20)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(24)-C(26)-H(26A)	109.5
C(24)-C(26)-H(26B)	109.5
C(24)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(24)-C(27)-H(27A)	109.5
C(24)-C(27)-H(27B)	109.5
С(24)-С(27)-Н(27С)	109.5
H(27A)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(20)-C(22)-H(22A)	109.5
C(20)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I(1)	17(1)	11(1)	14(1)	3(1)	7(1)	2(1)
Pd(1)	11(1)	9(1)	11(1)	0(1)	5(1)	0(1)
Pd(2)	9(1)	8(1)	10(1)	1(1)	4(1)	1(1)
P(1)	10(1)	10(1)	10(1)	0(1)	3(1)	1(1)
P(3)	10(1)	12(1)	11(1)	1(1)	4(1)	0(1)
P(2)	14(1)	11(1)	15(1)	-2(1)	7(1)	0(1)
N(1)	14(1)	9(1)	12(1)	1(1)	2(1)	0(1)
C(8)	14(1)	9(1)	13(1)	2(1)	-2(1)	3(1)
C(13)	13(1)	13(1)	14(1)	3(1)	0(1)	4(1)
C(28)	19(1)	12(1)	23(2)	-1(1)	8(1)	2(1)
C(7)	21(1)	10(1)	15(1)	3(1)	4(1)	2(1)
C(9)	13(1)	12(1)	15(1)	0(1)	1(1)	2(1)
C(1)	13(1)	10(1)	15(1)	0(1)	9(1)	1(1)
C(40)	16(1)	11(1)	20(2)	-2(1)	9(1)	1(1)
C(10)	13(1)	17(1)	21(2)	-1(1)	1(1)	0(1)
C(32)	13(1)	15(1)	14(1)	1(1)	6(1)	-1(1)
C(43)	19(1)	24(1)	16(2)	-7(1)	7(1)	-2(1)
C(17)	16(1)	20(1)	15(1)	2(1)	5(1)	0(1)
C(41)	24(1)	17(1)	25(2)	-4(1)	13(1)	4(1)
C(6)	16(1)	12(1)	16(1)	-1(1)	8(1)	-1(1)
C(42)	20(1)	14(1)	26(2)	-3(1)	10(1)	-2(1)
C(12)	18(1)	16(1)	15(1)	1(1)	2(1)	7(1)
C(11)	14(1)	16(1)	19(2)	-3(1)	-1(1)	1(1)
C(2)	13(1)	16(1)	17(1)	-1(1)	5(1)	0(1)
C(35)	18(1)	18(1)	20(2)	5(1)	9(1)	2(1)
C(4)	27(2)	12(1)	28(2)	-3(1)	15(1)	-6(1)
C(36)	15(1)	20(1)	16(2)	5(1)	1(1)	1(1)
C(20)	23(1)	25(1)	13(1)	-4(1)	6(1)	1(1)
C(3)	16(1)	18(1)	27(2)	-8(1)	7(1)	-8(1)
C(33)	18(1)	20(1)	22(2)	3(1)	11(1)	1(1)
C(38)	12(1)	32(2)	21(2)	10(1)	1(1)	1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for cain94_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(21)	16(1)	36(2)	21(2)	-7(1)	1(1)	2(1)
C(24)	24(2)	16(1)	34(2)	-5(1)	20(1)	-3(1)
C(19)	24(2)	26(1)	17(2)	9(1)	6(1)	-1(1)
C(14)	12(1)	14(1)	19(2)	-1(1)	4(1)	0(1)
C(29)	26(2)	15(1)	28(2)	-3(1)	15(1)	-5(1)
C(39)	17(1)	26(1)	19(2)	12(1)	5(1)	3(1)
C(37)	24(2)	31(2)	11(2)	-1(1)	2(1)	-1(1)
C(5)	26(2)	9(1)	25(2)	3(1)	11(1)	2(1)
C(31)	22(1)	16(1)	36(2)	-7(1)	14(1)	1(1)
C(15)	29(2)	15(1)	23(2)	-1(1)	10(1)	-1(1)
C(34)	24(2)	15(1)	24(2)	2(1)	7(1)	-5(1)
C(30)	25(2)	18(1)	24(2)	-1(1)	4(1)	6(1)
C(18)	18(1)	31(2)	16(2)	-2(1)	7(1)	0(1)
C(25)	32(2)	19(1)	40(2)	-2(1)	23(2)	-6(1)
C(16)	15(1)	23(1)	27(2)	0(1)	5(1)	4(1)
C(23)	30(2)	29(2)	19(2)	-10(1)	9(1)	-3(1)
C(26)	39(2)	26(2)	42(2)	-6(1)	33(2)	-4(1)
C(27)	20(2)	22(1)	54(2)	-10(2)	14(2)	-6(1)
C(22)	39(2)	30(2)	18(2)	2(1)	7(1)	7(1)

	Х	У	Z	U(eq)
H(7A)	5346	7423	5853	19
H(7B)	6073	7373	5192	19
H(10)	3610	5408	4866	22
H(43A)	7978	5234	5582	29
H(43B)	8361	4674	5175	29
H(43C)	9009	5254	5285	29
H(17)	7132	6712	4820	20
H(41A)	10612	4772	6277	31
H(41B)	9964	4193	6047	31
H(41C)	10524	4362	7093	31
H(42A)	8868	4258	7452	29
H(42B)	8286	4106	6403	29
H(42C)	7887	4621	6903	29
H(12)	5364	5821	3240	20
H(11)	4018	5292	3497	21
H(2)	8626	7168	8387	18
H(35A)	8793	6109	5450	27
H(35B)	9226	6733	5782	27
H(35C)	8447	6429	6242	27
H(4)	8090	8757	7294	25
H(3)	9037	8141	8434	24
H(33A)	11307	5731	6695	28
H(33B)	10996	6266	6015	28
H(33C)	10437	5664	5734	28
H(38A)	11581	5000	7928	34
H(38B)	11990	5208	8974	34
H(38C)	11711	5668	8159	34
H(21A)	7961	6533	9710	38
H(21B)	8450	6816	10700	38
H(21C)	7852	7206	9847	38

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for cain94_0m_a.

H(19A)	5794	6879	2985	33
H(19B)	6834	7227	3409	33
H(19C)	5892	7312	3822	33
H(14)	4831	6311	6752	18
H(29A)	6701	7879	9528	32
H(29B)	6132	8153	8548	32
H(29C)	6775	7576	8606	32
H(39A)	9468	4728	8791	31
H(39B)	10630	4683	9418	31
H(39C)	10307	4431	8394	31
H(37A)	10524	6147	8952	34
H(37B)	10823	5669	9738	34
H(37C)	9647	5778	9189	34
H(5)	6729	8413	6089	23
H(31A)	4145	7554	9372	35
H(31B)	5184	7817	10025	35
H(31C)	4572	8147	9107	35
H(15A)	3636	5294	6248	33
H(15B)	3744	5629	7189	33
H(15C)	4727	5338	7006	33
H(34A)	9868	6679	7736	32
H(34B)	10506	6913	7079	32
H(34C)	11000	6447	7851	32
H(30A)	5156	7233	7473	35
H(30B)	4604	7819	7595	35
H(30C)	4115	7220	7756	35
H(18A)	7502	5807	4204	32
H(18B)	7919	6350	3780	32
H(18C)	6895	6034	3200	32
H(25A)	4843	5556	8967	41
H(25B)	4174	5497	9669	41
H(25C)	5386	5582	10052	41
H(16A)	3508	6828	5724	32
H(16B)	3066	6532	6479	32
H(16C)	2823	6263	5469	32
H(23A)	6765	7568	10805	39

H(23B)	7349	7157	11634	39
H(23C)	6130	7130	11236	39
H(26A)	4993	6399	10968	47
H(26B)	3786	6350	10490	47
H(26C)	4363	6942	10460	47
H(27A)	3472	6863	8753	47
H(27B)	3090	6223	8835	47
H(27C)	3774	6360	8166	47
H(22A)	6411	6059	11082	44
H(22B)	7623	6157	11407	44
H(22C)	7093	5844	10451	44

Table 1. Crystal data and structure refinement for cain92 0m a (Compound 7(O)). DZ-75 Identification code Empirical formula C38 H46 N2 O0.38 P2 Formula weight 598.87 Temperature 100.15 K Wavelength 1.54178 Å Crystal system Triclinic Space group P-1 Unit cell dimensions $\alpha = 95.100(2)^{\circ}$. a = 11.6914(5) Å b = 12.0731(5) Å $\beta = 94.213(2)^{\circ}$. c = 13.1054(6) Å $\gamma = 113.203(2)^{\circ}$. Volume 1681.56(13) Å³ Ζ 2 Density (calculated) 1.183 Mg/m³ Absorption coefficient 1.388 mm⁻¹ F(000) 642 Crystal size 0.31 x 0.29 x 0.28 mm³ Theta range for data collection 3.410 to 68.328°. Index ranges -13<=h<=14, -14<=k<=14, -15<=l<=15 Reflections collected 15973 Independent reflections 6003 [R(int) = 0.0366] Completeness to theta = 67.679° 97.5 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7531 and 0.6619 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 6003 / 0 / 397 Goodness-of-fit on F² 1.038 R1 = 0.0370, wR2 = 0.0948Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0405, wR2 = 0.0976Extinction coefficient n/a Largest diff. peak and hole 0.433 and -0.278 e.Å-3

	x	V	7	U(eq)
	n n	9	L	0(04)
P(2)	5330(1)	4447(1)	7084(1)	14(1)
P(1)	7050(1)	4647(1)	8150(1)	18(1)
N(2)	4139(1)	3509(1)	7681(1)	14(1)
N(1)	7981(1)	4261(1)	7385(1)	15(1)
C(27)	3274(1)	2355(1)	7154(1)	14(1)
C(25)	4248(1)	5443(1)	8379(1)	17(1)
C(28)	2443(1)	2296(1)	6292(1)	16(1)
C(8)	7943(1)	3055(1)	7213(1)	15(1)
C(20)	5094(1)	5766(1)	7649(1)	16(1)
C(10)	7350(1)	1154(1)	6121(1)	22(1)
C(21)	5591(1)	6951(1)	7405(1)	21(1)
C(9)	7360(1)	2320(1)	6268(1)	17(1)
C(13)	8506(1)	2630(1)	7987(1)	17(1)
C(6)	9002(1)	6414(1)	7563(1)	16(1)
C(1)	8060(1)	6243(1)	8201(1)	16(1)
C(7)	9002(1)	5259(1)	7030(1)	17(1)
C(14)	6766(1)	2763(1)	5413(1)	19(1)
C(32)	3286(1)	1290(1)	7504(1)	16(1)
C(22)	5230(2)	7811(1)	7894(1)	25(1)
C(5)	9847(2)	7586(1)	7468(1)	22(1)
C(29)	1695(1)	1156(1)	5749(1)	20(1)
C(26)	3767(1)	4117(1)	8537(1)	19(1)
C(2)	7987(1)	7240(1)	8781(1)	20(1)
C(30)	1745(1)	105(1)	6054(1)	22(1)
C(17)	9197(1)	3423(1)	8994(1)	20(1)
C(4)	9759(2)	8578(1)	8031(1)	24(1)
C(12)	8463(1)	1455(1)	7804(1)	22(1)
C(23)	4393(2)	7490(2)	8622(1)	27(1)
C(33)	2332(1)	3421(1)	5943(1)	19(1)
C(35)	972(1)	3309(2)	5862(1)	24(1)
C(31)	2521(1)	173(1)	6931(1)	19(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cain92_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(19)	8682(2)	2823(2)	9938(1)	28(1)
C(36)	4073(1)	1323(1)	8491(1)	20(1)
C(16)	5406(2)	1881(2)	5056(1)	27(1)
C(11)	7890(2)	722(1)	6880(1)	24(1)
C(24)	3903(2)	6310(1)	8877(1)	24(1)
C(15)	7537(2)	2981(2)	4496(1)	25(1)
C(3)	8842(2)	8400(1)	8691(1)	23(1)
C(37)	3222(2)	647(2)	9267(1)	34(1)
C(38)	5033(2)	792(2)	8277(1)	30(1)
C(18)	10604(1)	3739(2)	9031(1)	24(1)
C(34)	2866(2)	3689(2)	4916(1)	28(1)
O(1)	6733(2)	4146(2)	8989(2)	19(1)

P(2)-P(1)	2.2793(5)
P(2)-N(2)	1.7053(12)
P(2)-C(20)	1.8235(14)
P(1)-N(1)	1.6981(12)
P(1)-C(1)	1.8124(15)
P(1)-O(1)	1.310(2)
N(2)-C(27)	1.4340(18)
N(2)-C(26)	1.4702(18)
N(1)-C(8)	1.4363(18)
N(1)-C(7)	1.4631(18)
C(27)-C(28)	1.4123(19)
C(27)-C(32)	1.4085(19)
C(25)-C(20)	1.395(2)
C(25)-C(26)	1.513(2)
C(25)-C(24)	1.391(2)
C(28)-C(29)	1.398(2)
C(28)-C(33)	1.5203(19)
C(8)-C(9)	1.411(2)
C(8)-C(13)	1.410(2)
C(20)-C(21)	1.393(2)
C(10)-H(10)	0.9500
C(10)-C(9)	1.398(2)
C(10)-C(11)	1.386(2)
C(21)-H(21)	0.9500
C(21)-C(22)	1.390(2)
C(9)-C(14)	1.520(2)
C(13)-C(17)	1.523(2)
C(13)-C(12)	1.398(2)
C(6)-C(1)	1.393(2)
C(6)-C(7)	1.5036(19)
C(6)-C(5)	1.394(2)
C(1)-C(2)	1.401(2)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900

Table 3. Bond lengths [Å] and angles [°] for cain92_0m_a.

C(14)-H(14)	1.0000
C(14)-C(16)	1.533(2)
C(14)-C(15)	1.535(2)
C(32)-C(31)	1.397(2)
C(32)-C(36)	1.5185(19)
С(22)-Н(22)	0.9500
C(22)-C(23)	1.387(2)
C(5)-H(5)	0.9500
C(5)-C(4)	1.392(2)
C(29)-H(29)	0.9500
C(29)-C(30)	1.385(2)
C(26)-H(26A)	0.9900
C(26)-H(26B)	0.9900
C(2)-H(2)	0.9500
C(2)-C(3)	1.386(2)
С(30)-Н(30)	0.9500
C(30)-C(31)	1.387(2)
С(17)-Н(17)	1.0000
C(17)-C(19)	1.531(2)
C(17)-C(18)	1.531(2)
C(4)-H(4)	0.9500
C(4)-C(3)	1.390(2)
С(12)-Н(12)	0.9500
C(12)-C(11)	1.387(2)
С(23)-Н(23)	0.9500
C(23)-C(24)	1.393(2)
С(33)-Н(33)	1.0000
C(33)-C(35)	1.536(2)
C(33)-C(34)	1.532(2)
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(31)-H(31)	0.9500
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800

C(36)-H(36)	1.0000
C(36)-C(37)	1.532(2)
C(36)-C(38)	1.527(2)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(11)-H(11)	0.9500
C(24)-H(24)	0.9500
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(3)-H(3)	0.9500
C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800
C(37)-H(37C)	0.9800
C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
N(2)-P(2)-P(1)	101.90(4)
N(2)-P(2)-C(20)	90.64(6)
C(20)-P(2)-P(1)	99.23(5)
N(1)-P(1)-P(2)	105.89(4)
N(1)-P(1)-C(1)	90.58(6)
C(1)-P(1)-P(2)	102.93(5)
O(1)-P(1)-P(2)	111.38(12)
O(1)-P(1)-N(1)	121.29(12)
O(1)-P(1)-C(1)	121.64(13)
C(27)-N(2)-P(2)	120.58(9)
C(27)-N(2)-C(26)	120.15(11)

C(26)-N(2)-P(2)	115.06(9)
C(8)-N(1)-P(1)	123.52(9)
C(8)-N(1)-C(7)	118.87(11)
C(7)-N(1)-P(1)	116.84(9)
C(28)-C(27)-N(2)	120.30(12)
C(32)-C(27)-N(2)	118.69(12)
C(32)-C(27)-C(28)	121.01(13)
C(20)-C(25)-C(26)	114.24(12)
C(24)-C(25)-C(20)	120.01(14)
C(24)-C(25)-C(26)	125.74(14)
C(27)-C(28)-C(33)	122.49(13)
C(29)-C(28)-C(27)	118.24(13)
C(29)-C(28)-C(33)	119.28(12)
C(9)-C(8)-N(1)	119.67(12)
C(13)-C(8)-N(1)	119.37(12)
C(13)-C(8)-C(9)	120.95(13)
C(25)-C(20)-P(2)	110.73(11)
C(21)-C(20)-P(2)	128.64(11)
C(21)-C(20)-C(25)	120.57(13)
C(9)-C(10)-H(10)	119.3
С(11)-С(10)-Н(10)	119.3
C(11)-C(10)-C(9)	121.33(14)
C(20)-C(21)-H(21)	120.4
C(22)-C(21)-C(20)	119.30(14)
C(22)-C(21)-H(21)	120.4
C(8)-C(9)-C(14)	122.01(12)
C(10)-C(9)-C(8)	118.25(13)
C(10)-C(9)-C(14)	119.74(13)
C(8)-C(13)-C(17)	122.22(13)
C(12)-C(13)-C(8)	118.54(13)
C(12)-C(13)-C(17)	119.21(13)
C(1)-C(6)-C(7)	114.47(13)
C(1)-C(6)-C(5)	119.92(14)
C(5)-C(6)-C(7)	125.60(13)
C(6)-C(1)-P(1)	111.37(10)
C(6)-C(1)-C(2)	120.43(14)

C(2)-C(1)-P(1)	128.20(12)
N(1)-C(7)-C(6)	106.34(11)
N(1)-C(7)-H(7A)	110.5
N(1)-C(7)-H(7B)	110.5
C(6)-C(7)-H(7A)	110.5
C(6)-C(7)-H(7B)	110.5
H(7A)-C(7)-H(7B)	108.7
C(9)-C(14)-H(14)	107.8
C(9)-C(14)-C(16)	111.76(13)
C(9)-C(14)-C(15)	111.07(12)
C(16)-C(14)-H(14)	107.8
C(16)-C(14)-C(15)	110.42(12)
C(15)-C(14)-H(14)	107.8
C(27)-C(32)-C(36)	122.00(13)
C(31)-C(32)-C(27)	118.26(13)
C(31)-C(32)-C(36)	119.72(13)
С(21)-С(22)-Н(22)	119.9
C(23)-C(22)-C(21)	120.10(15)
С(23)-С(22)-Н(22)	119.9
C(6)-C(5)-H(5)	120.2
C(4)-C(5)-C(6)	119.57(14)
C(4)-C(5)-H(5)	120.2
C(28)-C(29)-H(29)	119.4
C(30)-C(29)-C(28)	121.20(13)
C(30)-C(29)-H(29)	119.4
N(2)-C(26)-C(25)	105.93(11)
N(2)-C(26)-H(26A)	110.6
N(2)-C(26)-H(26B)	110.6
C(25)-C(26)-H(26A)	110.6
C(25)-C(26)-H(26B)	110.6
H(26A)-C(26)-H(26B)	108.7
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-C(1)	119.12(14)
C(3)-C(2)-H(2)	120.4
C(29)-C(30)-H(30)	120.1
C(29)-C(30)-C(31)	119.85(14)

C(31)-C(30)-H(30)	120.1
С(13)-С(17)-Н(17)	107.9
C(13)-C(17)-C(19)	112.03(13)
C(13)-C(17)-C(18)	110.16(12)
С(19)-С(17)-Н(17)	107.9
C(19)-C(17)-C(18)	110.84(12)
С(18)-С(17)-Н(17)	107.9
C(5)-C(4)-H(4)	119.9
C(3)-C(4)-C(5)	120.28(14)
C(3)-C(4)-H(4)	119.9
С(13)-С(12)-Н(12)	119.5
C(11)-C(12)-C(13)	121.08(14)
С(11)-С(12)-Н(12)	119.5
С(22)-С(23)-Н(23)	119.6
C(22)-C(23)-C(24)	120.90(14)
С(24)-С(23)-Н(23)	119.6
С(28)-С(33)-Н(33)	107.7
C(28)-C(33)-C(35)	111.77(12)
C(28)-C(33)-C(34)	111.16(12)
С(35)-С(33)-Н(33)	107.7
C(34)-C(33)-H(33)	107.7
C(34)-C(33)-C(35)	110.50(12)
C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5
C(33)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(32)-C(31)-H(31)	119.4
C(30)-C(31)-C(32)	121.25(13)
C(30)-C(31)-H(31)	119.4
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19C)	109.5

H(19B)-C(19)-H(19C)	109.5
С(32)-С(36)-Н(36)	108.1
C(32)-C(36)-C(37)	109.99(12)
C(32)-C(36)-C(38)	111.40(13)
С(37)-С(36)-Н(36)	108.1
C(38)-C(36)-H(36)	108.1
C(38)-C(36)-C(37)	110.90(13)
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
С(14)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(10)-C(11)-C(12)	119.84(14)
С(10)-С(11)-Н(11)	120.1
С(12)-С(11)-Н(11)	120.1
C(25)-C(24)-C(23)	119.12(15)
C(25)-C(24)-H(24)	120.4
C(23)-C(24)-H(24)	120.4
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(2)-C(3)-C(4)	120.62(14)
C(2)-C(3)-H(3)	119.7
C(4)-C(3)-H(3)	119.7
C(36)-C(37)-H(37A)	109.5
C(36)-C(37)-H(37B)	109.5
C(36)-C(37)-H(37C)	109.5
H(37A)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5
C(36)-C(38)-H(38A)	109.5
C(36)-C(38)-H(38B)	109.5

C(36)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5

Symmetry transformations used to generate equivalent atoms:
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(2)	12(1)	12(1)	20(1)	4(1)	4(1)	5(1)
P(1)	11(1)	16(1)	26(1)	-4(1)	1(1)	5(1)
N(2)	12(1)	13(1)	17(1)	1(1)	2(1)	4(1)
N(1)	12(1)	14(1)	19(1)	2(1)	2(1)	6(1)
C(27)	11(1)	14(1)	16(1)	2(1)	4(1)	4(1)
C(25)	14(1)	16(1)	20(1)	0(1)	-1(1)	5(1)
C(28)	14(1)	18(1)	16(1)	3(1)	4(1)	5(1)
C(8)	12(1)	15(1)	19(1)	3(1)	4(1)	6(1)
C(20)	11(1)	15(1)	21(1)	1(1)	-2(1)	6(1)
C(10)	21(1)	18(1)	24(1)	-1(1)	3(1)	6(1)
C(21)	18(1)	17(1)	28(1)	6(1)	3(1)	8(1)
C(9)	13(1)	17(1)	19(1)	1(1)	3(1)	4(1)
C(13)	12(1)	19(1)	21(1)	4(1)	3(1)	6(1)
C(6)	17(1)	17(1)	16(1)	3(1)	-2(1)	8(1)
C(1)	13(1)	17(1)	18(1)	0(1)	-4(1)	6(1)
C(7)	19(1)	16(1)	18(1)	5(1)	5(1)	7(1)
C(14)	20(1)	18(1)	19(1)	-1(1)	0(1)	8(1)
C(32)	14(1)	16(1)	18(1)	4(1)	5(1)	6(1)
C(22)	25(1)	15(1)	38(1)	4(1)	1(1)	9(1)
C(5)	22(1)	20(1)	23(1)	5(1)	4(1)	7(1)
C(29)	17(1)	22(1)	17(1)	1(1)	-1(1)	5(1)
C(26)	18(1)	17(1)	19(1)	1(1)	5(1)	6(1)
C(2)	16(1)	21(1)	23(1)	-3(1)	0(1)	7(1)
C(30)	21(1)	16(1)	22(1)	-3(1)	2(1)	2(1)
C(17)	19(1)	23(1)	20(1)	2(1)	0(1)	11(1)
C(4)	24(1)	16(1)	29(1)	3(1)	1(1)	4(1)
C(12)	22(1)	21(1)	27(1)	7(1)	4(1)	12(1)
C(23)	26(1)	19(1)	38(1)	-4(1)	4(1)	12(1)
C(33)	17(1)	19(1)	20(1)	4(1)	-1(1)	7(1)
C(35)	20(1)	26(1)	28(1)	5(1)	1(1)	12(1)
C(31)	21(1)	13(1)	23(1)	3(1)	5(1)	6(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for cain92_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(19)	25(1)	36(1)	24(1)	5(1)	4(1)	13(1)
C(36)	19(1)	16(1)	22(1)	4(1)	-1(1)	7(1)
C(16)	22(1)	31(1)	26(1)	1(1)	-4(1)	8(1)
C(11)	26(1)	16(1)	33(1)	3(1)	6(1)	10(1)
C(24)	21(1)	22(1)	28(1)	-2(1)	6(1)	8(1)
C(15)	30(1)	25(1)	21(1)	3(1)	3(1)	11(1)
C(3)	23(1)	16(1)	27(1)	-4(1)	-3(1)	8(1)
C(37)	29(1)	46(1)	22(1)	12(1)	2(1)	8(1)
C(38)	26(1)	29(1)	41(1)	10(1)	0(1)	16(1)
C(18)	19(1)	30(1)	24(1)	3(1)	-2(1)	10(1)
C(34)	27(1)	33(1)	28(1)	15(1)	6(1)	14(1)
O(1)	21(2)	22(2)	15(1)	9(1)	7(1)	7(1)

	Х	у	Z	U(eq)
H(10)	6965	648	5487	26
H(21)	6170	7169	6911	25
H(7A)	8863	5230	6272	21
H(7B)	9814	5205	7212	21
H(14)	6761	3558	5696	23
H(22)	5558	8620	7728	30
H(5)	10480	7708	7023	26
H(29)	1142	1100	5159	24
H(26A)	4143	4023	9208	23
H(26B)	2844	3767	8523	23
H(2)	7359	7121	9231	24
H(30)	1248	-660	5664	26
H(17)	9075	4199	9012	24
H(4)	10328	9379	7964	29
H(12)	8833	1154	8321	27
H(23)	4150	8083	8950	33
H(33)	2842	4127	6474	23
H(35A)	469	2679	5295	36
H(35B)	953	4088	5730	36
H(35C)	628	3088	6510	36
H(31)	2534	-554	7147	23
H(19A)	7775	2593	9882	42
H(19B)	9085	3396	10565	42
H(19C)	8856	2096	9971	42
H(36)	4537	2192	8798	24
H(16A)	5390	1114	4724	41
H(16B)	5025	2238	4564	41
H(16C)	4934	1727	5654	41
H(11)	7867	-75	6767	29
H(24)	3341	6100	9386	29

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for cain92_0m_a.

H(15A)	8399	3560	4733	38
H(15B)	7163	3311	3974	38
H(15C)	7543	2210	4196	38
H(3)	8802	9081	9084	27
H(37A)	2599	987	9377	51
H(37B)	3730	738	9924	51
H(37C)	2794	-217	8998	51
H(38A)	4599	-48	7943	45
H(38B)	5510	806	8928	45
H(38C)	5607	1277	7821	45
H(18A)	10750	2992	9017	37
H(18B)	11044	4280	9666	37
H(18C)	10920	4146	8433	37
H(34A)	3731	3751	4979	42
H(34B)	2854	4457	4741	42
H(34C)	2356	3030	4372	42