Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for:

Synthesis, characterization, and electrochemical properties of a firstrow metal phthalocyanine series

Madeline Peterson,[†] Camden Hunt,[†] Zongheng Wang, Shannon E. Heinrich, Guang Wu, and Gabriel Ménard*

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States

Table of Contents

1) NMR Spectra (Figures S1-S13)	S2-S8
2) EPR Spectra (Figures S14-S16)	S9-S10
3) UV-Vis Spectra (Figures S17-S27)	S11-S16
4) ⁵⁷ Fe Mössbauer Spectrum (Figure S28)	S17
5) Crystallographic Figures (Figures S29-S37; Table S1)	S18-S22
6) Electrochemical Figures (Figures S38-S50)	S23-S29

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. Chemical Shift (ppm)

Figure S1. ¹H NMR spectrum of 3,6-Diethoxyphthalonitrile, taken in CD₂Cl₂.

3.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 Chemical Shift (ppm)

Figure S2. ¹H NMR spectrum of ^{EtO}PcHLi, taken in CD₂Cl₂.

Figure S3. ¹H NMR spectra with relevant regions illustrating the HCl-induced conversion of ^{EtO}PcHLi to ^{EtO}PcH₂ over 48 h, taken in CD₂Cl₂; 1) t = 0; 2) t = 24 h; 3) t = 48 h.

Figure S4. ¹H NMR spectrum of ^{EtO}PcH₂, taken in CD₂Cl₂.

Figure S5. ¹H NMR spectrum of ^{EtO}PcVO, taken in CD₂Cl₂.

Figure S6. ¹H NMR spectrum of ^{EtO}PcCr, taken in CD₂Cl₂.

Figure S7. ¹H NMR spectrum of ^{EtO}PcMnCl, taken in CD₂Cl₂.

Figure S8. ¹H NMR spectrum of ^{EtO}PcMnN, taken in CD₂Cl₂.

Figure S10. ¹H NMR spectrum of ^{EtO}PcCo, taken in CD₂Cl₂.

Figure S12. ¹H NMR spectrum of ^{EtO}PcCu, taken in CD₂Cl₂.

Figure S13. ¹H NMR spectrum of ^{EtO}PcZn, taken in CDCl₃.

Figure S14. X-band EPR (v = 9.302510 GHz) spectrum of ^{EtO}PcVO taken in CH₂Cl₂ at 100K.

Figure S15. X-band EPR (v = 9.606425 GHz) spectrum of ^{EtO}PcCo taken in CH₂Cl₂ at 100K.

Figure S16. X-band EPR(v = 9.292836 GHz) spectrum of ^{EtO}PcCu taken in CH₂Cl₂ at 100K.

Figure S17. UV-Vis spectrum of ^{EtO}PcHLi taken in CH₂Cl₂ (2.9 µM).

Figure S18. UV-Vis spectrum of ^{EtO}PcH₂ taken in CH₂Cl₂ (3.6 µM).

Figure S19. UV-Vis spectrum of $^{EtO}PcVO$ taken in CH₂Cl₂ (4.3 μ M).

Figure S20. UV-Vis spectrum of ^{EtO}PcCr taken in CH₂Cl₂ (5.2 µM).

Figure S21. UV-Vis spectrum of $^{EtO}PcMnCl$ taken in CH₂Cl₂ (9.9 μ M).

Figure S22. UV-Vis spectrum of ^{EtO}PcMnN taken in CH₂Cl₂ (3.4 µM).

Figure S23. UV-Vis spectrum of $^{EtO}PcFe$ taken in CH₂Cl₂ (9.1 μ M).

Figure S24. UV-Vis spectrum of ^{EtO}PcCo taken in CH₂Cl₂ (11.6 µM).

Figure S25. UV-Vis spectrum of ^{EtO}PcNi taken in CH₂Cl₂ (4.7 μ M).

Figure S26. UV-Vis spectrum of ^{EtO}PcCu taken in CH₂Cl₂ (9.5 µM).

Figure S27. UV-Vis spectrum of $^{EtO}PcZn$ taken in CH₂Cl₂ (1.6 μ M).

Figure S28. Zero-field ⁵⁷Fe Mössbauer spectrum of ^{EtO}PcFe, with isomer shift and quadrupole splitting values (lower left). Taken at 90 K.

5. Crystallographic Figures

Figure S29. Solid-state molecular structure of ^{EtO}**PcHLi**. Hydrogen atoms (excluding H_{meso}) and cocrystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Li, lilac; H, off-white)

Figure S30. Solid-state molecular structure of $^{EtO}PcH_2$. Hydrogen atoms (excluding H_{pyr}) and cocrystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; H, off-white)

Figure S31. Solid-state molecular structure of ^{EtO}**PcVO**. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; V, slate blue)

Figure S32. Solid-state molecular structure of ^{EtO}**PcCr**. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. Only one molecule in the unit cell shown for clarity. (C, gray; N, blue; O, red; Cr, yellow)

Figure S33. Solid-state molecular structure of ^{EtO}**PcFe**. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Fe, orange)

Figure S34. Extended structure of ^{EtO}**PcFe**^{*} showing overlap of oxygen atoms from adjacent macrocycles with Fe centers. Hydrogen atoms, ethyl groups, and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Fe, orange)

Figure S35. Solid-state molecular structure of ^{EtO}**PcCo**. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Co, aquamarine)

Figure S36. Solid-state molecular structure of ^{EtO}PcNi. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Ni, lime green)

Figure S37. Solid-state molecular structure of ^{EtO}**PcCu**. Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. (C, gray; N, blue; O, red; Cu, gold)

Tables S1. Calculated peripheral C_x -to-N₄ distances (x = 1-8) as shown in Fig. 2 of the paper with N₄ defined as the plane created by the four inner pyrrolic nitrogen atoms in the Pc macrocycle. For unit cells containing multiple ^{EtO}PcM molecules, the second set of values are shown in parentheses. All d values are in Å and all dihedral angles in degrees (°).

Compd.	d	<i>d</i>	<i>d</i>	d	d	<i>d</i>	d	d	d avg	M–N4	dihed.1	dihed.2	dihed.avg	diso-N4
	(C1-N4)	(C ₂ -N ₄)	(C ₃ -N ₄)	(C4-N4)	(C₅–N₄)	(C ₆ -N ₄)	(C7–N4)	(C ₈ -N ₄)		dist.				
OEtPcH2	0.779	0.704	0.687	0.477	0.013	0.076	0.217	0.177	0.391	N/A	11.4	13.6	12.5	3.376
OETPCLiH	0.114	0.064	0.898	0.804	0.752	0.574	0.037	0.123	0.421	0.077	12.9	12.3	12.6	3.398
OEtPcVO	1.243	1.321	0.171	0.083	0.130	0.112	0.496	0.581	0.517	0.557	15.2	9.0	12.1	3.266
OEtPcCr	0.276	0.245	0.236	0.051	0.276	0.245	0.236	0.051	0.202	0	0	0	0	N/A
	(0.425)	(0.203)	(0.024)	(0.036)	(0.425)	(0.203)	(0.024)	(0.036)	(0.172)	(0)	(0)	(0)	(0)	
^{OEt} PcMnCl	0.651	0.616	0.253	0.245	0.126	0.180	0.252	0.335	0.332	0.260	6.6	7.5	7.1	3.372
^{OEt} PcMnN	0.389	0.298	0.156	0.074	0.443	0.559	0.919	0.926	0.471	0.402	11.0	10.5	10.8	3.296
	(0.225)	(0.262)	(0.616)	(0.622)	(0.393)	(0.247)	(0.063)	(0.135)	(0.320)	(0.407)	(7.9)	(6.9)	(7.4)	
OEtPcFe	0.162	0.162	1.250	1.244	1.244	1.250	0.162	0.162	0.705	0	17.5	17.5	17.5	3.265
^{OEt} PcFe [*]	0.109	0.350	0.256	0.243	0.109	0.350	0.256	0.243	0.240	0	0	0	0	N/A
OEtPcCo	0.888	0.699	0.847	0.800	0.390	0.172	0.058	0.008	0.483	0.018	18.8	9.7	14.3	3.332
OEtPcNi	0.347	0.110	0.002	0.031	0.699	0.602	0.786	0.742	0.415	0.009	15.4	9.7	12.6	3.401
OEt PcCu	0.782	0.812	0.666	0.779	0.030	0.070	0.134	0.329	0.450	0.024	9.6	15.7	12.7	3.380

6. Electrochemical Figures

Figure S38. CVs of $^{\text{EtO}}$ PcH₂ at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.53 mM of $^{\text{EtO}}$ PcH₂, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc⁺.

Figure S39. CVs of ^{EtO}**PcHLi** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.53 mM of ^{EtO}**PcLiH**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .

Figure S40. CVs of ^{Eto}**PcVO** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.45 mM of ^{Eto}**PcVO**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .

Figure S41. CVs of ^{EtO}**PcCr** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in acetonitrile with 0.52 mM of ^{EtO}**PcCr**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .

Figure S42. CVs of ^{EtO}**PcCr** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.57 mM of ^{EtO}**PcCr**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Pseudo-referenced to a Pt wire electrode.

Figure S43. CVs of ^{EtO}**PcCr** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in THF with 0.52 mM of ^{EtO}**PcCr**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Pseudo-referenced to a Pt wire electrode.

Figure S44. CVs of ^{Eto}**PcMnCl** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.50 mM of ^{Eto}**PcMnCl**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc⁺.

Figure S45. CVs of ^{EtO}**PcFe** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in THF with 0.43 mM of ^{EtO}**PcFe**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc⁺.

Figure S46. CVs of ^{EtO}**PcFe** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.50 mM of ^{EtO}**PcFe**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc⁺.

Figure S47. CVs of ^{EtO}**PcCo** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.54 mM of ^{EtO}**PcCo**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .

Figure S48. CVs of ^{EtO}**PcNi** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.48 mM of ^{EtO}**PcNi**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .

Figure S49. CVs of ^{Eto}**PcCu** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.48 mM of ^{Eto}**PcCu**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc⁺.

Figure S50. CVs of ^{EtO}**PcZn** at varying scan rates (inset) with the arrow indicating initial scan direction. Experimental conditions: Taken in DCM with 0.60 mM of ^{EtO}**PcZn**, 0.1 M of [Bu₄N][PF₆], 3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire pseudo-reference electrode. Internally referenced to Fc/Fc^+ .