Electronic Supplementary Information (ESI)

Two new members in the quaternary Cs-Ag-As-S family with different arrangements of Ag-S and As-S asymmetric building units: syntheses, structures, and theoretical studies

Dongming Yan,^b Yu Xiao,^a Chang Liu,^{a,e} Peipei Hou,^a Wenxiang Chai,^d

Hideo Hosono,^f Hua Lin,^{*,c} and Yi Liu^{*,a}

^aInstitute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China ^bSchool of Civil and Architectural Engineering, Zhejiang University, Hangzhou

310058, China

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^dCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

^eSchool of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China ^fMaterials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

*E-mail: linhua@fjirsm.ac.cn and liuyimse@zju.edu.cn.

Figure S1. EDX analysis of (a) I and (b) II.

Point-1			Point-2					
Element	Weight%	Atomic%	Formula	Element	Weight%	Atomic%	Formula	
As L	20.05	45.14	4.94	As L	19.25	43.72	4.82	
S K	19.02	18.33	2.00	S K	20.09	19.53	2.15	
Ag L	27.25	18.24	1.99	Ag L	27.55	18.60	2.05	
Cs L	33.68	18.29	2	Cs L	33.11	18.14	2	
Total	100.00			Total	100.00			
	Poi	nt-3			Poi	nt-4		
Element	Weight%	Atomic%	Formula	Element	Weight%	Atomic%	Formula	
As L	20.12	45.15	5.01	As L	19.01	43.43	4.62	
S K	19.58	18.81	2.09	S K	19.88	19.44	2.07	
Ag L	27.02	18.03	2.00	Ag L	26.97	18.32	1.95	
Cs L	33.28	18.02	2	Cs L	34.14	18.82	2	
Total	100.00			Total	100.00			
	Poi	nt-5						
Element	Weight%	Atomic%	Formula	Average formula of L				
As L	20.23	45.33	5.03					
S K	19.52	18.73	2.08	$- Cs_2Ag_{2.0 (7)} As_{1.9 (9)} S_{4.8 (8)}$				
Ag L	26.92	17.93	1.99					
Cs L	33.33	18.01	2					
Total	100.00							

Electronic	Suppl	lementary	Information	(ESI)
	~ ~ ~ ~ ~ ~ ~ ~			1-~-/

Point-1				Point-2				
Element	Weight%	Atomic%	Formula	Element	Weight%	Atomic%	Formula	
As L	24.13	49.86	8.15	As L	23.95	49.79	7.87	
S K	28.85	25.51	4.17	S K	28.01	24.92	3.94	
Ag L	10.22	6.28	1.03	Ag L	10.19	6.30	0.99	
Cs L	36.80	18.35	3	Cs L	37.85	18.99	3	
Total	100.00			Total	100.00			
	Poi	nt-3			Poi	nt-4		
Element	Weight%	Atomic%	Formula	Element	Weight%	Atomic%	Formula	
As L	23.88	49.73	7.77	As L	24.52	50.62	8.05	
S K	27.96	24.92	3.89	S K	27.55	24.34	3.87	
Ag L	9.92	6.14	0.96	Ag L	10.06	6.17	0.98	
Cs L	38.24	19.21	3	Cs L	37.87	18.86	3	
Total	100.00			Total	100.00			
	Poi	nt-5						
Element	Weight%	Atomic%	Formula	Average formula of II:				
As L	24.22	50.09	8.10					
S K	28.21	24.97	4.04					
Ag L	10.38	6.38	1.03	$= \begin{array}{c} CS_{3}Ag_{1.0(1)} AS_{3.9(9)} S_{7.9(8)} \\ \end{array}$				
CsL	37.19	18.56	3					
Total	100.00			1				

Figure S2. Coordination environment of Cs atoms including Cs–S bonds in the compound I.

Figure S3. Coordination environment of Cs atoms including Cs–S bonds in the compound II.

Figure S4. (a) Structure of PbAgAsS₃ viewed from the bc plane. (b) The arrangement

of $[AgAsS_3]$ clusters in the structure.

Figure S5. (a) Structure of $BaAgAsS_3$ viewed from the *ac* plane. (b) The 1D $[AgAsS_3]^{2-}$ chain in the structure.

Figure S6. Structure of KAg₂AsS₃ viewed from the *ab* plane.

Figure S7. (a) Structure of $Rb_8Cu_6As_8S_{19}$ viewed from the *ac* plane. (b) The 2D

 $[Cu_6As_8S_{19}]^{8-}$ layer in the structure.

Figure S8. (a) Structure of KM'_2MS_3 (M' = Cu, Ag; M= As, Sb) viewed from the *bc*

plane. (b) The 2D $[M'_2MS_3]^-$ layer in the structure.

Figure S9. (a) Structure of $CsAg_2AsS_3$ viewed from the *ab* plane. (b) The 2D

 $[Ag_2AsS_3]^-$ layer in the structure.

Figure S10. (a) Structure of BaAgSbS₃ viewed from the *ac* plane. (b) The 2D $[AgSbS_3]^{2-}$ layer in the structure.

Figure S11. Structure of CsAgSb₄S₇ viewed from the *ac* plane.

Figure S12. (a) Structure of $K_2Ag_3Sb_3S_7$ viewed from the *ab* plane. (b) The 2D $[Ag_3Sb_3S_7]^{2-}$ layer in the structure.

Figure S13. 2D layered structure of KAg₃As₂S₅ along the [110] direction.

Figure S14. (a) Structure of $CsCu_2AsS_3$ viewed from the *ab* plane. (b) The 2D

 $[Cu_2AsS_3]^-$ layer in the structure.

Figure S15. Structure of HgAgAsS₃ viewed from the *ab* plane.

Figure S16. Structure of KCu₄AsS₄ viewed from the *ac* plane.

Figure S17. Structure of $Tl_3Ag_3M_2S_6$ (M= As, Sb) viewed from the *ab* plane.

Figure S18. Structure of PbCuMS₃ (M= As, Sb) viewed from the *ab* plane.

Figure S19. Structure of $PbAgSb_3S_6$ viewed from the *ab* plane.

Figure S20. Structure of $Cs_3Ag_9Sb_4S_{12}$ viewed from the *ab* plane.

Figure S21. TGA diagrams of (a) I and (b) II.

Cs(1)–S(1)	3.4710(18)	Cs(2)–S(4)	3.8487(18)
Cs(1)-S(3)	3.524(2)	Cs(2)–S(1)	3.869(2)
Cs(1)-S(2)	3.5310(17)	Ag(1)–S(1)	2.4989(16)
Cs(1)-S(3)	3.5657(17)	Ag(1)–S(2)	2.5838(16)
Cs(1)-S(4)	3.6165(19)	Ag(1)–S(4)	2.5890(16)
Cs(1)-S(1)	3.6196(18)	Ag(2)–S(3)	2.5016(17)
Cs(1)-S(5)	3.8927(18)	Ag(2)–S(4)	2.5260(15)
Cs(1)-S(3)	3.9690(17)	Ag(2)–S(2)	2.5486(16)
Cs(2)-S(1)	3.4067(19)	As(1)–S(2)	2.2378(16)
Cs(2)–S(2)	3.4403(19)	As(1)-S(4)	2.2496(18)
Cs(2)-S(3)	3.4498(16)	As(1)-S(5)	2.2965(15)
Cs(2)-S(5)	3.5517(18)	As(2)-S(1)	2.2034(16)
Cs(2)–S(5)	3.565(2)	As(2)–S(3)	2.2040(15)
Cs(2)-S(4)	3.7136(17)	As(2)-S(5)	2.3134(18)
S(1)–Ag(1)–S(2)	109.93(5)	S(2)–As(1)–S(4)	101.25(6)
S(1)–Ag(1)–S(4)	111.42(5)	S(2)–As(1)–S(5)	106.31(6)
S(2)–Ag(1)–S(4)	119.89(5)	S(4)–As(1)–S(5)	96.20(6)
S(3)–Ag(2)–S(4)	124.63(5)	S(1)–As(2)–S(3)	103.93(6)
S(3)–Ag(2)–S(2)	115.98(5)	S(1)-As(2)-S(5)	99.01(6)
S(4)-Ag(2)-S(2)	118.10(6)	S(3)–As(2)–S(5)	100.96(6)

Table S1. Selected bond lengths (Å) and angles (deg) for $Cs_2Ag_2As_2S_5$ (I).

Cs(1)–S(7)	3.428(5)	Cs(3) - S(5)	3.589(5)
Cs(1)-S(2)	3.467(5)	Cs(3) - S(1)	3.765(6)
Cs(1)-S(4)	3.565(5)	Cs(3) - S(1)	4.075(6)
Cs(1) - S(6)	3.763(5)	As(4) - S(4)	2.167(5)
Cs(1)-S(1)	3.819(5)	As(4) - S(3)	2.321(5)
Cs(1) - S(5)	3.834(5)	As(4) - S(6)	2.399(5)
Cs(1)-S(4)	3.876(6)	As(1) - S(7)	2.161(5)
Cs(1) - S(8)	3.898(6)	As(1) - S(3)	2.276(6)
Cs(1) - S(8)	4.068(6)	As(1) - S(5)	2.368(5)
Cs(2) - S(3)	3.440(5)	As(2) - S(1)	2.234(5)
Cs(2) - S(6)	3.449(5)	As(2) - S(5)	2.287(5)
Cs(2) - S(7)	3.507(5)	As(2) - S(2)	2.299(5)
Cs(2) - S(3)	3.574(5)	As(3)-S(8)	2.199(5)
Cs(2) - S(4)	3.635(5)	As(3) - S(6)	2.239(5)
Cs(2) - S(5)	3.668(5)	As(3) - S(2)	2.298(5)
Cs(2) - S(6)	3.715(5)	Ag(1) - S(1)	2.672(6)
Cs(2) - S(2)	3.736(5)	Ag(1) - S(1)	2.672(6)
Cs(2) - S(3)	3.764(6)	Ag(1) - S(8)	2.700(6)
Cs(2) - S(2)	3.940(5)	Ag(1) - S(8)	2.700(6)
Cs(3) - S(8)	3.397(5)	Ag(2)-S(1)	2.611(6)
Cs(3) - S(7)	3.452(5)	Ag(2)-S(1)	2.611(6)
Cs(3) - S(5)	3.522(5)	Ag(2) - S(8)	2.638(6)
Cs(3) - S(7)	3.548(5)	Ag(2) - S(8)	2.638(6)
S(7)-As(1)-S(3)	102.53(19)	S(3)-As(4)-S(6)	88.58(17)
S(7)-As(1)-S(5)	98.43(17)	S(1)-Ag(1)-S(1)	100.8(2)
S(3)-As(1)-S(5)	94.83(18)	S(1)-Ag(1)-S(8)	109.82(17)
S(1)-As(2)-S(5)	101.6(2)	S(1)-Ag(1)-S(8)	123.29(15)
S(1)-As(2)-S(2)	107.5(2)	S(8) - Ag(1) - S(8)	91.7(2)
S(5)-As(2)-S(2)	98.90(19)	S(1)-Ag(1)-Ag(2)	50.38(12)
S(8) - As(3) - S(6)	99.6(2)	S(8)-Ag(1)-Ag(2)	134.13(12)
S(8)–As(3)–S(2)	103.7(2)	S(1)-Ag(2)-S(1)	104.1(3)
S(6)-As(3)-S(2)	96.38(18)	S(1)-Ag(2)-S(8)	121.82(15)
S(4)–As(4)–S(3)	103.08(19)	S(1)-Ag(2)-S(8)	107.91(18)
S(4)-As(4)-S(6)	98.9(2)	S(8) - Ag(2) - S(8)	94.5(3)

Table S2. Selected bond lengths (Å) and angles (deg) for $Cs_3AgAs_4S_8$ (II).

Cs ₂ Ag ₂	$As_2S_5(I)$	$Cs_{3}AgAs_{4}S_{8}$ (II)		
Site	Valence	Site	Valence	
Cs1	1.12	Cs1	1.03	
Cs2	1.03	Cs2	1.05	
Ag1	0.92	Cs3	1.19	
Ag2	1.00	Ag1	0.96	
As1	3.09	Ag2	1.02	
As2	3.29	As1	3.11	
		As2	2.99	
		As3	3.24	
		As4	2.91	

Table S3. Band Valence in $Cs_2Ag_2As_2S_5$ (I) and $Cs_3AgAs_4S_8$ (II).

Table S4. Structural features of selected quaternary sulfides in the X-M'-M-S (X =

Compounds	Crystal system	Space group	Structural dimension	ABUs	Units link mode	Ref.
PbAgAsS ₃	monoclinic	$P2_{1}/c$ (14)	0D	[AgS ₂], [AsS ₂]	corner-sharing	1
BaAgAsS ₃	monoclinic	$P2_{1}/c$ (14)	1D	[AgS ₄], [AsS ₃]	corner- and edge- sharing	2
$Cs_2Ag_2As_2S_5$	triclinic	<i>P</i> 1 (no. 2)	2D	[AgS ₃], [AsS ₃]	corner-sharing	This work
$Cs_2Cu_2Sb_2S_5$	triclinic	<i>P</i> 1 (no. 2)	2D	[CuS ₄], [SbS ₃]	corner- and edge- sharing	3
KAg ₂ AsS ₃	triclinic	<i>P</i> 1 (no. 2)	2D	[AgS ₃], [AsS ₃]	corner-sharing	4
$Rb_8Cu_6As_8S_{19}$	triclinic	<i>P</i> 1 (no. 2)	2D	[CuS ₃], [AsS ₃]	corner-sharing	3
KAg ₂ SbS ₃	triclinic	<i>P</i> 1 (no. 2)	2D	[AgS ₃], [SbS ₃]	corner-sharing	5
KCu ₂ SbS ₃	triclinic	<i>P</i> 1 (no. 2)	2D	[CuS ₃], [SbS ₃]	corner-sharing	6
KCu ₂ AsS ₃	triclinic	<i>P</i> 1 (no. 2)	2D	[CuS ₃], [AsS ₃]	corner-sharing	7
Cs ₃ AgAs ₄ S ₈	monoclinic	<i>C</i> 2/ <i>c</i> (no. 12)	2D	[AgS ₄], [AsS ₃]	corner- and edge- sharing	This work
$Rb_2Cu_2Sb_2S_5$	monoclinic	$P2_{1}/c$ (14)	2D	[CuS ₃], [CuS ₄], [SbS ₃]	corner-sharing	3
CsAg ₂ AsS ₃	monoclinic	$P2_{1}/c$ (14)	2D	[AgS ₂], [AgS ₃], [AsS ₃]	corner-sharing	8
K ₂ CuSbS ₃	monoclinic	$P2_1/c$ (14)	2D	[CuS ₃], [SbS ₃]	corner-sharing	9
BaAgSbS ₃	monoclinic	<i>C</i> 2/ <i>c</i> (15)	2D	[AgS ₂], [AgS ₃], [SbS ₃]	corner-sharing	10
$CsAgSb_4S_7$	monoclinic	<i>C</i> 2/ <i>c</i> (15)	2D	[AgS ₄], [SbS ₃]	corner-sharing	11
$K_2Ag_3Sb_3S_7$	orthorhombi c	<i>Cmc</i> 2 ₁ (36)	2D	[AgS ₃], [AgS ₄], [SbS ₃]	corner- and edge- sharing	5
KAg ₃ As ₂ S ₅	orthorhombi c	<i>Pnma</i> (62)	2D	[AgS ₃], [AgS ₄], [AsS ₃]	corner-sharing	12
CsCu ₂ AsS ₃	orthorhombi c	<i>Pbca</i> (63)	2D	[CuS ₃], [AsS ₃]	corner-sharing	13
HgAgAsS ₃	monoclinic	<i>Cc</i> (9)	3D	[AgS ₄], [AsS ₃]	corner-sharing	14
KCu ₄ AsS ₄	monoclinic	<i>P</i> 2 ₁ (9)	3D	[CuS ₂], [CuS ₃], [AsS ₃]	corner-sharing	13
$Tl_3Ag_3As_2S_6$	monoclinic	$P2_{1}/c$ (14)	3D	[AgS ₃], [AgS ₄], [AsS ₃]	corner-sharing	15
$Tl_3Ag_3Sb_2S_6$	monoclinic	$P2_{1}/c$ (14)	3D	[AgS ₃], [AgS ₄], [SbS ₃]	corner-sharing	15
PbCuAsS ₃	orthorhombi c	<i>Pmn</i> 2 ₁ (31)	3D	[CuS ₄], [AsS ₃]	corner-sharing	16
PbCuSbS ₃	orthorhombi c	<i>Pmn</i> 2 ₁ (31)	3D	[CuS ₄], [SbS ₃]	corner-sharing	17
PbAgSb ₃ S ₆	orthorhombi c	<i>Pna</i> 2 ₁ (33)	3D	[AgS ₄], [SbS ₃], [SbS ₄]	corner- and edge- sharing	18
$Cs_3Ag_9Sb_4S_{12}$	tetragonal	<i>I4/m</i> (87)	3D	[AgS ₃], [AgS ₄], [SbS ₃]	corner- and edge- sharing	8

cations; M' = Cu and Ag; M = As and Sb) system.

References

- 1 B. J. Wuensch and W. Nowacki, Z. Kristallogr., 1967, 125, 459-488.
- 2 D. M. Yan, C. Liu, W. X. Chai, X. R. Zheng, L. D. Zhang, M. J. Zhi, C. M. Zhou, Q.
- C. Zhang and Y. Liu, Chem. Asian J., 2016, 11, 1842–1848.
- 3 C. Zhang, M. Ji, S.-H. Ji and Y.-L. An, Inorg. Chem., 2014, 53, 4856-4860.
- 4 D. M. Yan, P. P. Hou, C. Liu, W. X. Chai, X. R. Zheng, L. D. Zhang, M. J. Zhi, C.
- M. Zhou and Y. Liu, J. Solid State Chem., 2016, 241, 47–53.
- 5 H. G. Yao, M. Ji, S. Ji, R. Zhang, Y. An and G. Ning, *Cryst. Growth Des.*, 2009, **9**, 3821–3824.
- 6 R. Wang, X. Zhang, J. He, C. Zheng, J. Lin and F. Huang, *Dalton Trans.*, 2016, 45, 3473–3479.
- 7 J. E. Jerome, P. T. Wood, W. T. Pennington and J. W. Kolis, *Inorg. Chem.*, 1994, **33**, 1733–1734.
- 8 H. G. Yao, P. Zhou, S. H. Ji, R. C. Zhang, M. Ji, Y. L. An and G. L. Ning, *Inorg. Chem.*, 2010, **49**, 1186–1190.
- 9 B. Deng, G.-H. Chan, D. E. Ellis, R. P. van Duyne and J. A. Ibers, *J. Solid State Chem.*, 2005, **178**, 3169–3175.
- 10 C. Liu, Y. Y. Shen, P. P. Hou, M. J. Zhi, C. M. Zhou, W. X. Chai and Y. Liu, *Inorg. Chem.*, 2015, **54**, 8931–8936.
- 11 F.-Q. Huang and J. A. Ibers, J. Solid State Chem., 2005, 178, 212–217.
- 12 M. G. Kanatzidis and J. H. Chou, J. Solid State Chem., 1996, 127, 186-201.
- 13 H.-G. Yao, M. Ji, S.-H. Ji and Y.-L. An, J. Solid State Chem., 2013, 198, 289-294.

- 14 I. Nakai and D. E. Appleman, Am. Mineral., 1983, 68, 235-244.
- 15 L. Karanović, D. Poleti, T. Balić-Žunić, E. Makovicky and I. Gržetić, J. Alloys Compd., 2008, 457, 66–74.
- 16 E. Hellner and G. Leineweber, Z. Kristallogr., 1956, 108, 161–183.
- 17 A. Edenharter, W. Nowacki and Y. Takeuchi, Z. Kristallogr., 1970, 131, 397-417.
- 18 M. Nespolo, T. Ozawa, Y. Kawasaki and K. Sugiyama, J. Miner. Petro. Sci., 2012,

107, 226–243.