Supporting Information

Title: Investigation of Cobalt(III)-Phenylalanine Complexes for Hypoxia-activated Drug Delivery

Author(s): Isabela Cristina Aguiar de Souza,^a Savyo de Souza Santana,^a Javier G. Gómez,^a Guilherme P. Guedes,^a João Madureira,^a Susana Maria de Ornelas Quintal^a and Mauricio Lanznaster

Syntheses of the Precursor Complexes

[CoCl₂(py₂en)]ClO₄:^{1,2} To a 30 mL of aqueous solution of Na₃[Co(NO₂)₆] (4.0 mmol) was added the py₂en (4.0 mmol) dissolved in 10 mL of water. The reaction mixture was kept at 80°C under magnetic stirring for 1 hour. The LiClO₄ (16.0 mmol) was added and the yellow precipitate of $[Co(NO_2)_2(py_2en)]ClO_4$ was isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 40 %). IR (ATR, 4000 – 600 cm⁻¹): 3192 (N-H); 1613 - 1449 (C=C, C=N); 1412, 1341 (O-N=O); 1091 (Cl-O); 820 - 692 (aromatic C-H). ESI-MS (MeOH): $m/z^+= 393.11$ for $[Co(NO_2)_2(py_2en)]^+$ (calculated 393.07). The complex [Co(NO₂)₂(py₂en)]ClO₄ (2.8 mmol) was dissolved in 58 mL of HCl 37% and heated up to 80° C for 3 hours. Then, 12 mL of HClO₄ 70% was added. The mixture was stirred for 30 minutes and cooled in an ice bath. The purple precipitate of [CoCl₂(py₂en)]ClO₄ was isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 63 %). IR (ATR, 4000 – 600 cm⁻¹): 3211 (N-H); 1610 - 1418 (C=C, C=N); 1085 (Cl-O); 812 – 690 (aromatic C-H). ¹H NMR (500 MHz, DMSO-d₆) δ /ppm: 9.34 (d, J = 5.7 Hz, 1H, H_1), 8.27 (td, J = 7.7, 1.3 Hz, 1H, H_3), 8.02 (td, J = 7.7, 1.3 Hz, 1H, $H_{2'}$), 7.98 (b, NH), 7.85 (m, 2H, H_2 and H_4), 7.69 (d, J = 7.7 Hz, 1H, $H_{1'}$), 7.59 (b, NH'), 7.36 (t, J = 5.7 Hz, 1H, $H_{3'}$), 6.86 (d, J = 5.7 Hz, 1H, $H_{4'}$), 5.00 (dd, J = 17.5, 7.7 Hz, 1H, H_5), 4.36 (d, J = 17.5 Hz, 1H, H_5), 4.04 (d, J = 16.4, 7.7 Hz, 1H, $H_{5'}$), 3.81 (dd, J = 16.4, 7.7 Hz, 1H, $H_{5'}$), 3.66 (m,

¹ M. V. P. de Mello, G. Cebrián-Torrejón, J. R. Pereira, C. S. Moreira, C. B. S. M. R. Gomes, D. R. da Rocha, E. M. S. Fagundes, G. B. Ferreira and M. Lanznaster, *J. Inorg. Biochem*. 2019, **199**, 110756.

² R. C. Batista, F. S. Miranda, C. B. Pinheiro and M. Lanznaster, *Eur. J. Inorg. Chem.*, 2018, 612-616.

1H, *H₇*), 3.13 (dd, *J* = 13.0, 4.1 Hz, 1H, *H₇*), 2.60 (m, 1H, *H_{7'}*), 2.20-2.27 (m, 1H, *H_{7'}*). ESI-MS (MeOH): m/z⁺= 371.11 for [CoCl₂(py₂en)]⁺ (calculated 371.02).

[CoCl₂(tpa)]ClO₄:³ To a solution of $[Co(H_2O)_6]Cl_2$ (4.2 mmol) in 20 mL of methanol, was added a methanol solution (10 mL) of TPA (4.2 mmol) and solid LiClO₄ (6.3 mmol) in inert atmosphere. Gaseous chlorine was slowly introduced into this solution under cooling for 15 min. The purple precipitate of $[CoCl_2(TPA)]ClO_4$ was isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 63 %). IR (ATR, 4000 – 600 cm⁻¹): 1609 - 1417 (C=C, C=N); 1083 (Cl-O); 819 – 716 (aromatic C-H). ¹H NMR (500 MHz, DMSO-d₆) δ/ppm: 9.44 (d, *J* = 6.0 Hz, 1H, *H*₁₀), 9.01 (dd, *J* = 6.0, 0.7 Hz, 2H, *H*₁ and *H*₁·), 8.07 (td, *J* = 7.7, 1.4 Hz, 2H, *H*₃ and *H*₃·), 7.88 (td, *J* = 7.7, 1.4 Hz, 1H, *H*₈), 7.69 (d, *J* = 7.7 Hz, 2H, *H*₄ and *H*₄·), 7.62-7.57 (m, 3H, *H*₂, *H*₂· and *H*₉), 7.31 (dd, *J* = 7.7, 0.7 Hz, 1H, *H*₇), 5.60 (d, *J* = 15.8 Hz, 2H, *H*₅ and *H*₅·), 5.17 (s, 2H, *H*₆), 4.82 (d, *J* = 15.8 Hz, 2H, *H*₅ and *H*₅·). ESI-MS (MeOH): m/z⁺ = 419.03 for [CoCl₂(tpa)]⁺ (calculated 419.02).

[CoCl₂(py₂enMe₂)]ClO₄: To a solution of $[Co(H_2O)_6]Cl_2$ (3.3 mmol) in 20 mL of methanol, was added a methanol solution (10 mL) of py₂enMe₂ (3.3 mmol) and solid LiClO₄ (5.0 mmol) in inert atmosphere. Gaseous chlorine was slowly introduced into this solution under cooling for 15 min. The green precipitate of $[CoCl_2(py_2enMe_2)]ClO_4$ was isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 67 %). IR (ATR, 4000 – 600 cm⁻¹): 1615 - 1418 (C=C, C=N); 1081 (Cl-O); 817 – 722 (aromatic C-H). ¹H NMR (500 MHz, DMSO-d₆) δ/ppm: 9.32 (d, *J* = 5.8 Hz, 2H, *H*₁ and *H*₁'), 8,19 (td, *J* = 7.6, 1.3 Hz, 2H, *H*₃ and *H*₃'), 7.75 (m, 4H, *H*₂, *H*₂', *H*₄ and *H*₄'), 4.82 (d, *J* = 16.0 Hz, 2H, *H*₅ and *H*₅'), 4.02 (d, *J* = 16.0 Hz, 2H, *H*₅ and *H*₅'), 2.89 (d, *J* = 9.6 Hz, 2H, *H*₇ and *H*₇'), 2.25 (s, 6H, *CH*₃ and *CH*₃'). ESI-MS (MeOH): m/z⁺= 399.14 for [CoCl₂(py₂enMe₂)]⁺ (calculated 399.06).

[Co(bipy)₂Cl₂]Cl: To a solution of [Co(H₂O)₆]Cl₂ (4.2 mmol) in 30 mL of methanol, was added solid 2,2'-bipyridine (8.4 mmol) and solid LiCl (23.6 mmol) in inert atmosphere. Gaseous chlorine was slowly introduced into this solution under cooling for 15 min. The resulting precipitate was filtered off and redissolved in methanol on a water

³ A. A. Vlcek, Inorg. Chem., 1967, 6, 1425 – 1427.

bath and the methanol was slowly evaporated to half of the solution. The slow evaporation of the solution at room temperature resulted in the formation of violet crystals of $[Co(bipy)_2Cl_2]Cl$ that were isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 60 %). IR (ATR, 4000 – 600 cm⁻¹): 1603, 1424 (C=C, C=N); 803 - 726 (aromatic C-H). ¹H NMR (500 MHz, DMSO-d₆) δ /ppm: 9.84 (dd, *J* = 5.8, 0.8 Hz, 2H, *H*₁ and *H*₁'), 8.95 (d, *J* = 7.7 Hz, 2H, *H*₄ and *H*₄'), 8.79 (d, *J* = 7.7 Hz, 2H, *H*₈ and *H*₈'), 8.64 (td, *J* = 7.7, 1.3 Hz, 2H, *H*₃ and *H*₃'), 8.26 (td, *J* = 7.7, 1.3 Hz, 2H, *H*₇ and *H*₇'), 8.20 (td, *J* = 7.7, 1.3, 2H, *H*₂ and *H*₂'), 7,51 (td, *J* = 7.7, 1.3 Hz, 2H, *H*₆ and *H*₆'), 7,34 (d, *J* = 5.8, 0.8 Hz, 2H, *H*₅ and *H*₅'). ESI-MS (MeOH): m/z⁺= 441.12 for [Co(bipy)₂Cl₂]⁺ (calculated 441.01).

Complexes	1	2	3	4
Empirical	C ₂₃ H ₂₈ CoN ₅ O ₂ ·2(ClO ₄)	$C_{27}H_{28}CoN_5O_2 \cdot 2(ClO_4)$	$C_{25}H_{32}CoN_5O_2 \cdot 2(ClO_4)$	$C_{29}H_{26}CoN_5O_2 \cdot 2(ClO_4) \cdot C_2H_3N$
formula				
Formula	664.33	712.37	692.38	775.43
weight				
Crystal	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
system				
Space group	P1	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁
Temperature (K)	273	290	298	273
	a = 6.5320 (11)	a = 12.5779 (3)	a = 10.4694 (3)	a = 12.5559 (6)
Linit coll	b = 9.9881 (18)	b = 15.3268 (4)	b = 12.8698 (5)	b = 9.9926 (4)
dimonsions	c = 11.068 (2)	c = 16.0033 (5)	c = 22.5611 (8)	c = 14.5754 (7)
	α = 71.076 (6)	α = 90	α = 90	β = 113.235 (2)
(~,)	β = 86.884 (5)	β = 90	β = 90	
	γ = 89.537 (5)	γ = 90	γ = 90	
Volume (Å ³)	682.0 (2)	3085.10 (15)	3039.86 (18)	1680.40 (13)
Z	1	4	4	2
0 max	26.4°	26.2°	26.5°	25.5°
Absorption				
coefficient	0.89	0.79	0.80	0.74
(mm ⁻¹)				
Reflections	46056	37755	20827	61651
collected	40050	57755	20027	
Independent	53/0	6303	6235	5921
reflections	5540	0505	0233	
Reflections				5337
observed	5303	5292	5029	
[I>2σ(I)]				
R _{int}	0.023	0.070	0.045	0.040
R[F ² >2σF ²]	0.025	0.057	0.051	0.040
wR(F ²)	0.066	0.164	0.145	0.108
S	1.04	1.07	1.04	1.09
Parameters	370	406	390	452

Table S1. Crystallographic data of cobalt(III)-phenylalanine complexes.

Table S2. Conformers ensemble energy of two most stable isomers of complexes $1 - 4$ and
differential stabilization in competing isomers (E _{NCI}) of cation-anion interactions in simulated
solution.

Complex	Condition	Isomer 1 Candidate		r 1 Candidate Isomer 2 Candidate		E _{NCI} stab	surplus ilization
			Energy (Eh)		Energy (Eh)	kJ/mol	Assigned isomer
[Co(Phe)(py ₂ en)](ClO ₄) ₂	NAWS	Λ-cisα-	-88.98947	Δ -cis β_1 -	-88.98412	22.6	A cic0
(1)	WAWS	exo,exo	-130.85765	exo,exo	-130.86113	23.0	Δ -cisp ₁
[Co(Phe)(tpa)](ClO ₄) ₂	NAWS	0	-97.54474	0	-97.54182	11 7	0
(2)	WAWS	p ₁	-139.41860	P 2	-139.41122	11.7	P 1
$[Co(Phe)(py_2enMe_2)](ClO_4)_2$	NAWS	Λ-cisα-	-95.27150	Δ-cisα-	-95.26814	0.0	A siss
(3)	WAWS	exo,exo	-137.14090	exo,exo	-137.14090	0.0	Δ-cisα
[Co(Phe)(bipy) ₂)](ClO ₄) ₂	NAWS	^	-100.81285	•	-100.81009	E 1	٨
(4)	WAWS	Λ	-142.68309	Δ	-142.68229	5.1	Δ

⁺ At 298.15 K, 1 bar and 1 mol/dm³ with water as implicit solvent (SMD).

TMS: Chemical Shielding (ppm) - C - 187,341; H - 31,668

Py2enMe2

	Chem shielding (ppm)	δ (ppm)
C _{1/1'} (py)	31.492	155.8
C _{2/2'} (py)	60.798	126.5
C _{3/3'} (py)	44.490	142.9
C _{4/4'} (py)	59.857	127.5
C _{4a/4a'} (py)	19.345	168.0
C _{5/5'} (CH2)	121.998	65.3
C _{6/6'} (Me)	140.566	46.8
C _{7/7'} (en)	136.324	51.0

	Cham chielding (nnm)		δ (ppm)	
	chem smelding (ppm)	Calc.	Corr.	Exp.
H _{1/1'} (py)	22.875	8.79	8.39	8.46
H _{2/2'} (py)	24.173	7.50	7.15	7.21
H _{3/3'} (py)	23.565	8.10	7.73	7.71
H _{4/4'} (py)	23.798	7.87	7.51	7.40
H _{5/5'} (CH ₂)	27.964	3.70	3.71	3.62
H _{6/6'} (NCH ₃)	29.563	2.10	2.11	2.19
H _{7/7'} (en)	29.068	2.60	2.60	2.56

Scale factors – aromatic (0.954), aliphatic (1.001)

<u>NaPhe</u>			δ (ppm)	
	Chem shielding (ppm)	Calc (DMSO)	Corr. (DMSO)	Exp (D ₂ O)
H _c (CH-phe)	28.315	3.35	3.42	3.56
H _d (CH ₂ -phe)	28.818	2.85	2.90	2.90
H _{d'} (CH ₂ -phe)	28.548	3.12	3.18	3.05
H _{e/i} (Ph)	24.126	7.69	7.33	7.33
H _{f/h} (Ph)	23.959	7.76	7.40	7.42
H _g (Ph)	23.941	7.73	7.36	7.34

Scale factors – aromatic (0.953), aliphatic (1.019)

				- /				
	Calc.	Exp.		Calc.	Exp.		Calc.	Calc.
	(ppm)	(ppm)	Δ_{δ}	(ppm)	(ppm)	Δ_{δ}	(ppm)	(ppm)
	Λ-cisα-	Λ-cisα-	(ppm)	Δ -cis β_1 -	Δ-cisβ ₁ -	(ppm)	Λ-cisβ ₁ -	Λ-cisβ ₁ -
	exo,exo	exo,exo		exo,exo	exo,exo		exo,exo	endo,exo
H1 (py)	7.55	7.87- 7.78	≈ -0.28	8.29	7.87- 7.79	≈ +0.46	7.06	7.58
H2 (py)	7.22	8.19- 8.16	≈ -0.96	7.83	8.19- 8.16	≈ -0.34	7.11	7.32
H3 (py)	8.04	7.54	+0.50	8.33	7.48	+0.85	8.10	8.14
H4 (py)	7.61	7.01	+0.60	7.80	6.67	+1.13	7.66	7.66
H5 (CH ₂)	4.47 <i>,</i> 4.90	4.19 <i>,</i> 4.63	+0.28, +0.27	3.75, 4.73	4.03 <i>,</i> 4.37- 4.30	-0.28, ≈ +0.39	3.71, 4.74	4.14, 4.83
H6 (NH)	_ §	7.59	_ §	_ §	7.16	_ §	_ §	_ §
H7 (en)	2.41, 3.01	2.56 <i>,</i> 3.56	-0.15, - 0.55	1.81, 3.21	2.12, 3.87	-0.31 <i>,</i> - 0.66	2.14, 3.44	3.16, 3.53
H7' (en)	2.34, 3.07	2.12, 2.85	+0.22, +0.22	2.75, 2.89	n.i., 3.12	-, -0.23	3.61, 3.78	2.66, 3.99
H6' (NH)	_ §	7.59	_ §	_ §	7.44	_ §	_ §	_ §
H5' (CH₂)	4.58 <i>,</i> 5.21	4.01 <i>,</i> 4.31	+0.57, +0.90	3.86 <i>,</i> 4.21	4.37- 4.30, 4.77	≈ -0.48, -0.56	4.69 <i>,</i> 4.93	4.59, 4.77
H4' (py)	7.78	7.90	-0.12	7.65	7.87- 7.79	≈ -0.18	7.75	7.75
H3' (py)	8.24	8.28	-0.04	8.11	8.19- 8.16	≈ -0.06	8.13	8.14
H2' (py)	7.80	8.33	-0.53	7.41	7.87- 7.79	≈ -0.42	7.37	7.42
H1' (py)	8.46	7.87- 7.78	≈ +0.64	6.94	8.31	-1.37	6.65	6.86
NH ₂ - phe	- [§]	5.20, 5.42	- [§]	- [§]	4.60 <i>,</i> 5.88	- [§]	_ §	_ §
Hα (CH- phe)	3.94	2.77	+1.17	4.06	3.40	+0.66	3.96	3.95
Hβ (CH₂- phe)	2.90, 3.54	2.98, 3.24	-0.08, +0.30	3.09 <i>,</i> 3.79	n.i.	-	2.94, 3.65	2.82, 3.51
H2/H6 (Ph)	7.05	7.29- 7.18	-0.19	7.51	7.36- 7.32	+0.17	7.17	6.99
H3/H5 (Ph)	7.06	7.29- 7.18	-0.18	7.73	7.36- 7.32	+0.39	7.30	7.04
H4 (Ph)	7.11	7.29- 7.18	-0.13	7.70	7.36- 7.32	+0.36	7.44	7.09

Table S4 - Complex $[Co(Phe)(py_2en)](ClO_4)_2$, **1**, ¹H-NMR chemical shift in DMSO-d₆: calculated and experimental (for assigned structures).

 $^{\$}$ - NMR calculations do not correctly determine exchangeable protons.

	Calc. (ppm)	Exp. (ppm)	A. (nnm)	Calc. (ppm)
	β1	β1	Δ _δ (ppm)	β2
H1 (py)	8.32	8.26	+0.06	8.37
H2 (py)	7.55	7.66	-0.11	7.61
НЗ (ру)	8.09	8.16	-0.07	8.13
Н4 (ру)	7.68	7.80	-0.12	7.72
H5 (CH ₂)	5.13, 5.01	5.43, 5.10-5.00	-0.30, ≈ -0.04	5.53 <i>,</i> 5.03
H1' (py)	7.74	8.10	-0.36	6.58
H2' (py)	7.19	7.57	-0.38	6.98
H3' (py)	7.97	8.14	-0.17	7.85
H4' (py)	7.58	7.80	-0.22	7.54
H5' (CH ₂)	4.96, 4.63	5.33, 5.10-5.00	-0.37; ≈ -0.42	5.52, 4.92
H6 (CH ₂)	5.02, 4.76	5.10-5.00	≈ -0.03, ≈ -0.29	5.08, 5.02
H7 (py)	7.20	7.34	-0.14	7.19
H8 (py)	7.86	7.97	-0.11	7.86
Н9 (ру)	7.57	7.70	-0.13	7.57
Н10 (ру)	9.10	9.06	+0.04	8.36
NH ₂ -phe	_ [§]	6.23, 4.86	_ \$	_ [§]
Hα (CH-phe)	3.58	3.35	+0.23	3.91
Hβ (CH ₂ -phe)	3.53, 2.75	3.00-2.85	+0.61, -0.10	3.80, 3.23
H2/H6 (Ph)	7.07	7.16	+0.09	7.68
H3/H5 (Ph)	7.06	7.16	+0.10	7.71
H4 (Ph)	7.05	7.16	-0.11	7.42

Table S5 - Complex [Co(Phe)(tpa)](ClO₄)₂, **2**, ¹H-NMR chemical shift in DMSO-d₆: calculated and experimental (for assigned structure).

[§] - NMR calculations do not correctly determine exchangeable protons.

	Calc. (ppm)	Exp. (ppm)		Calc. (ppm)	Exp. (ppm)	
	Λ-cisα-	Λ-cisα-	Δ _δ (ppm)	Δ-cisα-	Δ-cisα-	Δ _δ (ppm)
	exo,exo	exo,exo		exo,exo	exo,exo	
H1 (py)	7.72	8.13	-0.41	7.10	8.56	-1.46
H2 (py)	7.18	7.66	-0.48	7.14	7.52	-0.38
H3 (py)	8.09	8.25	-0.16	8.02	8.20	-0.18
H4 (py)	7.67	7.92-7.85	≈ -0.22	7.66	7.83	-0.17
H5 (CH₂)	4.24, 4.46	4.46-4.36	-0.17, +0.05	4.44, 4.93	n.i.	-
H6 (NMe)	2.58	2.56	+0.02	2.55	2.53	+0.02
H7 (en)	2.55, 2.76	2.64, 2.85	-0.09, - 0.09	2.54, 2.78	2.64, 2.87	-0.10, - 0.09
H7' (en)	2.67, 2.83	2.85 (both)	-0.18, - 0.02	2.68, 2.77	2.64, 2.87	+0.04, - 0.10
H6' (NMe)	2.36	2.33	+0.03	2.39	2.38	+0.01
	4 5 4 . 0 4	4.46-4.36,	≈ +0.10,		4 20 4 02	+0.16, -
H5 (CH ₂)	4.51, 4.84	4.74	+0.10	4.54, 4.58	4.38, 4.83	0.26
H4' (py)	7.81	7.92-7.85	≈ -0.07	7.84	n.i.	-
H3' (py)	8.30	8.32	-0.02	8.31	n.i.	-
H2' (py)	7.86	7.92-7.85	≈ -0.02	7.85	n.i.	-
H1' (py)	8.52	9.02	-0.50	8.49	8.31	+0.18
NH ₂ -phe	— [§]	4.06, 6.93	— [§]	— [§]	4.72, 6.03	_ [§]
Hα (CH- phe)	3.63	3.45	+0.18	2.91	3.14	-0.23
Hβ (CH ₂ - phe)	2.76, 3.39	2.90 (both)	-0.14, +0.49	2.74, 3.50	2.82	-0.08, +0.68
H2/H6 (Ph)	6.94	7.24-7.12	≈ -0.01	7.18	7.24-7.12	≈ -0.00
H3/H6 (Ph)	7.06	7.24-7.12	≈ -0.12	7.34	7.24-7.12	≈ +0.16
H4 (Ph)	7.17	7.24-7.12	≈ -0.01	7.53	7.24-7.12	≈ +0.35

Table S6 - Complex $[Co(Phe)(py_2enMe_2)](ClO_4)_2$, **3**, ¹H-NMR chemical shift in DMSO-d₆: calculated and experimental (for assigned structures).

[§] - NMR calculations do not correctly determine exchangeable protons.

	Calc. (ppm)	Exp. (ppm)	A. (222)	Calc. (ppm)
	Λ	Λ	Δ _δ (ppm)	Δ
H1 (py)	8.72	9.28	-0.56	8.59
H2 (py)	8.10	8.21	-0.11	8.07
НЗ (ру)	8.61	8.68	-0.07	8.64
Н4 (ру)	8.69	8.97	-0.28	8.77
Н5 (ру)	8.54	6.98	+1.56	8.63
Н6 (ру)	8.27	7.59	+0.68	8.34
Н7 (ру)	7.35	8.38-8.35	≈ -1.02	7.44
Н8 (ру)	6.69	8.84	-2.15	7.28
H1' (py)	7.72	8.38-8.35	≈ -0.64	6.77
H2' (py)	7.32	8.09	-0.77	7.33
H3' (py)	8.40	8.68	-0.28	8.35
H4' (py)	8.57	8.97	-0.40	8.55
H5' (py)	8.56	7.65	+0.91	8.49
H6' (py)	8.33	7.65	+0.68	8.28
Н7' (ру)	7.52	8.38-8.35	≈ -0.85	7.43
H8' (py)	7.54	8.84	-1.30	7.04
NH ₂ -phe	_ [§]	7.15, 5.34	_ [§]	_ [§]
Hα (CH-phe)	3.97	4.13	-0.16	3.27
Hβ (CH ₂ -phe)	3.44, 2.80	3.12, 2.81	+0.32, -0.01	3.56, 2.73
H2/H6 (Ph)	6.94	7.30-7.25	≈ -0.34	7.68
H3/H5 (Ph)	7.13	7.30-7.25	≈ -0.14	7.71
H4 (Ph)	7.30	7.30-7.25	≈ +0.02	7.42

Table S7 - Complex $[Co(bipy)_2(Phe)](ClO_4)_2$, **4**, ¹H-NMR chemical shift in DMSO-d₆: calculated and experimental (for assigned structure).

 ${}^{\$}$ - NMR calculations do not correctly determine exchangeable protons

H' = N' = Co' = N' = A' $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = N' = A'$ $H' = N' = Co' = A'$ $H' = Co' = A'$	8.33 (td, 7.8 Hz, 1.4 Hz, 1H, $H_{2'}$), 8.28 (m, 1H, $H_{3'}$), 8.19-8.16 (m, 1H, H_2), 7.90 (d, 7.8 Hz, 1H, $H_{4'}$), 7.87-7.78 (m, 2H, H ₁ , $H_{1'}$), 7.59 (b, 1H, NH), 7.54 (t, 6.4 Hz, 1H, H_3), 7.29-7.18 (m, 5H, H_2 - H_6 - $Phen$), 7.59 (overlap, NH'), 7.01 (d, 5.4 Hz, 1H, H_4), 5.42 (t, 9.0 Hz, 1H, NH_2), 5.20 (t, 10.2 Hz, 1H, NH_2), 4.63 (dd, 16.6, 6.3 Hz, 1H, H_5), 4.31 (m, 1H, $H_{5'}$), 4.19 (d, 16.6 Hz, 1H, H_5), 4.01 (m, 1H, $H_{5'}$), 3.56 (m, 1H, H_7), 3.24 (overlap, H_β), 2.98 (m, 1H, H_β), 2.85 (m, 1H, $H_{7'}$), 2.77 (m, 1H, H_{α}), 2.56 (m, 1H, H_7), 2.12 (m, 1H, $H_{7'}$).
$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	8.31 (m, 1H, $H_{1'}$), 8.19-8.16 (m, 2H, H_2 , $H_{3'}$), 7.87-7.79 (m, 3H, H_1 , $H_{2'}$ and $H_{4'}$), 7.48 (t, 6.5 Hz, 1H, H_3), 7.44 (br, 1H, NH'), 7.36-7.32 (m, 5H, H_2 - H_6 - $Phen$), 7.16 (br, NH), 6.67 (d, 5.5 Hz, 1H, H_4), 5.88 (t, 9.0 Hz, 1H, NH_2), 4.77 (dd, 17.6, 6.2 Hz, 1H, H5'), 4.60 (m, 1H, NH_2), 4.37- 4,30 (m, H5, H5'), 4.03 (dd, 17.4, 9.4 Hz, H5), 3.87 (m, 1H, H7), (3.40 (m, 1H, H_{α}), 3.12 (m, 1H, $H_{7'}$), 2.12 (m, 1H, H_7). H_{6s} and $H_{7'}$ could not be identified.
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	9.06 (d, 5.4 Hz, 1H, H_{10}), 8.26 (d, 5.4 Hz, 1H, H_1), 8.16 (td, 7.7, 1.4 Hz, 1H, H_3), 8.14 (td, 7.7, 1.4 Hz, 1H, $H_{3'}$), 8.10 (d, 5.4 Hz, 1H, $H_{1'}$), 7.97 (td, 7.7, 1.4 Hz, 1H, H_8), 7.80 (t, 7.7 Hz, 2H, H_4 and $H_{4'}$), 7.70 (t, 7.7 Hz, 1H, H_9), 7.66 (t, 7.7 Hz, 1H, H_2), 7.57 (t, 7.7 Hz, 1H, $H_{2'}$), 7.34 (d, 7.7 Hz, 1H, H_7), 7.16 (m, 5H, H_2 - H_6 - $Phen$), 6.23 (t, 8.8 Hz, 1H, NH_2), 5.43 (d, 16.6 Hz, 1H, H_5), 5.33 (d, 16.6 Hz, 1H, $H_{5'}$), 5.10-5.00 (m, 4H, H_6 , H_5 and $H_{5'}$), 4.86 (t, 8.8 Hz, 1H, NH_2), 3.35 (t, 5.5 Hz, 1H, H_{α}), 3,00-2,85 (qd, 15.0, 5.5 Hz, 2H, H_8).
CH ₃ ' γ	9.02 (d, 5.8 Hz, 1H, $H_{1'}$), 8.32 (td, 7,7, 1,0 Hz, 1H, $H_{3'}$), 8.25 (m, 1H, H_3), 8.13 (d, 5.4 Hz, 1H, H_1), 7.92 -7.85 (m, 3H, $H_{2'}$, H_4 and $H_{4'}$), 7.66 (ddd, 7.7, 6.2, 1.0 Hz, 1H, H_2), 7.24-7.12 (m, 5H, H_2 - H_6 -Phen), 6.93 (t, 10.4 Hz, 1H, N H_2), 4.74 (d, 16.3 Hz, 1H, $H_{5'}$), 4.46-4.36 (m, 3H, $H_{5',2}H_5$), 4.06 (t, 10.4 Hz, 1H, N H_2), 3.45 (m, 1H, H_{α}), 2.90 (m, 2H, H_6), 2.85 (m, 3H, H_7 , $2H_{7'}$), 2.64 (m, 1H, H_7), 2.56 (s, 3H, CH_3), 2.33 (s, 3H, $CH_{3'}$).

Table S8 - ¹ H NMR (500 MHz,	δ /ppm) assignments for	complexes 1-4 in DMSO-d ₆ .
---	--------------------------------	---

$CH_{3} = \begin{bmatrix} 4 & 3 & 2 & 2^{+} \\ 5 & 7 & N & 7^{+} \\ CH_{3} = \begin{bmatrix} 7 & N & 7^{+} \\ 0 & NH_{2} & 0 \\ 0 & 0 & NH_{2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & NH_{2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	8.56 (d, 5.8 Hz, 1H, H_1), 8,31 (m, $H_{1'}$), 8.20 (dd, 5.8 Hz, 1H, H_3), 7.83 (m, 1H, H_4), 7.52 (t, 7.7, Hz, 1H, H_2), 7.24-7.12 (m, 5H, H_2 - H_6 -Phen), 6.03 (t, 11.0 Hz, 1H, NH ₂), 4.83 (d, 16.3 Hz, 1H, $H_{5'}$), 4.72 (overlap NH ₂), 4.38 (m, 1H, $H_{5'}$), 3.14 (overlap, H_{α}), 2.87 (m, H_7 or $7'$), 2.82 (m, H_6), 2.64 (overlap, H_7 or $7'$), 2.53 (s, 3H, CH ₃), 2.38 (s, 3H, CH _{3'}). Some hydrogen atoms could not be identified unequivocally due to overlapping.
$\begin{array}{c} 3' 2' 4' 3' 2' 4' 3' 3' 2' 4' 3' 3' 2' 4' 3' 3' 2' 4' 3' 3' 2' 4' 3' 3' 3' 2' 4' 3' 3' 2' 4' 3' 3' 2' 4' 3' 3' 3' 2' 4' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'$	9.28 (d, $J = 6.0$ Hz, 1H, H_1), 8.97 (t, 7.9 Hz, 2H, H_4 and $H_{4'}$), 8.84 (d, 7.9 Hz, 2H, H_8 and $H_{8'}$), 8.68 (t, 7.9 Hz, 2H, H_3 and $H_{3'}$), 8.38-8,35 (m, 3H, $H_{1'}$, H_7 and $H_{7'}$), 8.21 (ddd, 7.9, 6.0, 1.3 Hz 1H, H_2), 8.09 (ddd, 7.9, 6.0, 1.3 Hz, 1H, $H_{2'}$), 7.65 (m, 2H, $H_{5'}$ and $H_{6'}$), 7.59 (ddd, 7.9, 6.0, 1.3 Hz, 1H, H_6), 7.30-7.25 (m, 5H, H_2 - H_6 - <i>Phen</i>), 7.15 (t, 10.4 Hz, 1H, NH_2), 6.98 (d, 6.0 Hz, 1H, H_5), 5.34 (t, 10.4 Hz, 1H, NH_2), 4.13 (m, 1H, H_{α}), 3.12 (dd, 15.5, 3.7 Hz, 1H, H_6), 2.81 (dd, 15.5, 8.5 Hz, 1H, H_6).

Fig. S1. Representation of $[Co(phenylalanine)(py_2en)]^{2+}$ (1).

Fig. S2. Representation of [Co(phenylalanine)(tpa)]²⁺ (2).

Fig. S3. Representation of $[Co(phenylalanine)(py_2enMe_2)]^{2+}$ (3).

Fig. S4. Representation of $[Co(bipy)_2(phenylalanine)]^{2+}$ (4).

Fig. S5. Infrared spectrum (ZnSe/diamond ATR) of complex [CoCl₂(py₂en)]ClO₄.

Fig. S6. Infrared spectrum (ZnSe/diamond ATR) of complex [CoCl₂(tpa)]ClO₄.

Fig. S7. Infrared spectrum (ZnSe/diamond ATR) of complex [CoCl₂(py₂enMe₂)]ClO₄.

Fig. S8. Infrared spectrum (ZnSe/diamond ATR) of complex [Co(bipy)₂Cl₂]Cl.

Fig. S9. Infrared spectrum (ZnSe/diamond ATR) of complex 1.

Fig. S10. Infrared spectrum (ZnSe/diamond ATR) of complex 2.

Fig. S11. Infrared spectrum (ZnSe/diamond ATR) of complex **3**.

Fig. S12. Infrared spectrum (ZnSe/diamond ATR) of complex 4.

Fig. S13. ¹H NMR spectrum of complex [CoCl₂(py₂en)]ClO₄ in DMSO-d₆.

Fig. S18. ¹H NMR spectrum of complex **2** in DMSO-d₆.

Fig. S19. ¹H NMR spectrum of complex **3** in DMSO-d₆. Ratio Λ -cis α -exo-exo: Δ -cis α -exo: Δ -cis α -cis α -exo: Δ -cis α -exo: Δ -ci

Fig. S20. ¹H NMR spectrum of complex **4** in DMSO-d₆.

Fig. S21. ¹H NMR spectrum of complex $[Co^{III}_2(\mu-OH)(\mu-O_2)(TPA)_2](CIO_4)_3$ obtained in this work (top) and the one reported by Kotani *et al* (bottom).

Fig. S22. ESI-MS spectrum (in MeOH) of $[CoCl_2(py_2en)]ClO_4$ (black), $[CoCl_2(tpa)]ClO_4$ (red), $[CoCl_2(py_2enMe_2)]ClO_4$ (green) and $[Co(bipy)_2Cl_2]Cl$ (blue).

Fig. S23. ESI-MS spectrum of complex 1 in MeCN.

Fig. S24. ESI-MS spectrum of complex **2** in MeCN.

Fig. S25 ESI-MS spectrum of complex **3** in MeCN.

Fig. S26. ESI-MS spectrum of complex **4** in MeCN.

Fig. S27. UV-visible spectra of **1** in MeCN at 1.0×10^{-3} mol L⁻¹ and 3.0×10^{-5} mol L⁻¹.

Fig. S28. UV-visible spectra of **2** in MeCN at 1.0×10^{-3} mol L⁻¹ and 3.0×10^{-5} mol L⁻¹.

Fig.S29. UV-visible spectra of **3** in MeCN at 1.0×10^{-3} mol L⁻¹ and 3.0×10^{-5} mol L⁻¹.

Fig. S30. UV-visible spectra of **4** in MeCN at 1.0×10^{-3} mol L⁻¹ and 3.0×10^{-5} mol L⁻¹.

Fig. S31. UV-visible spectra of **1** in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right) at 1.0×10^{-3} mol L⁻¹.

Fig. S32. UV-visible spectra of **2** in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right) at 1.0×10^{-3} mol L⁻¹.

Fig. S33. UV-visible spectra of **3** in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right) at 1.0×10^{-3} mol L⁻¹.

Fig. S34. UV-visible spectra of **4** in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right) at 1.0×10^{-3} mol L⁻¹.

Fig. S35. UV-visible spectra of L-phenylalanine in pH 5.5 MES/DMSO (5%) (black) and pH 7.4 HEPES/DMSO (5%) (red) at 1.0×10^{-3} mol L⁻¹.

Fig. S36. UV-visible spectra of the complex in $[Co^{III}_2(\mu-OH)(\mu-O_2)(TPA)_2](CIO_4)_3$ in pH 7.4 HEPES/DMSO (5%) at 1.0×10^{-4} mol L⁻¹.

Fig. S37. Cyclic and square wave voltammograms of complexes **1-4** (1 x 10^{-4} mol L⁻¹) in MES buffer (pH 5.5), using a three electrode arrange (working: carbon; ref.: Ag/AgCl(NaCl 3 mol L⁻¹); aux.: Pt wire). CV: 0.1 V s⁻¹; SWV: pulse = 25 mV, step size = 4 mV and freq. = 15 Hz.

Fig. S38. UV–Visible spectra of complex **1** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES buffer/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), from freshly prepared solution and after 24 h at 25°C.

Fig. S39. UV–Visible spectra of complex **2** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), from freshly prepared solution and after 24 h at 25°C.

Fig. S40. UV–Visible spectra of complex **3** (1.0×10^{-3} mol L⁻¹) in MES buffer/DMSO (5%) pH 5.5 (left) and HEPES buffer/DMSO (5%) pH 7.4 (right), from freshly prepared solution and after 24 h at 25°C.

Fig. S41. UV–Visible spectra of complex **4** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), from freshly prepared solution and after 24 h at 25°C.

Fig. S42. UV-Visible spectra of complex **1** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 1 hour.

Fig. S43. UV-Visible spectra of complex **1** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 24 hours.

Fig. S44. UV-Visible spectra of complex **2** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 1 hour.

Fig. S45. UV-Visible spectra of complex **2** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES buffer/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 24 hours.

Fig. S46. UV-Visible spectra of complex **3** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 1 hour.

Fig. S47. UV-Visible spectra of complex **3** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom), at 25°C during 24 hours.

Fig. S48. UV-Visible spectra of complex **4** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom) at 25°C during 1 hour.

Fig. S49. UV-Visible spectra of complex **4** (1.0×10^{-3} mol L⁻¹) in pH 5.5 MES/DMSO (5%) (left) and pH 7.4 HEPES/DMSO (5%) (right), before and after reaction with ascorbic acid (5:1), saturated with O₂ (top), air (middle) and argon (bottom) at 25°C during 24 hours.

Fig. S50. Spectral changes for complex **2** (5.0×10^{-3} mol L⁻¹) during electrochemical reduction at E_{cpe} = -325 mV vs Ag/AgCl in pH 7.4 HEPES/DMSO (10 %), saturated with O₂ (top), air (middle) and argon (bottom) at 25°C during 1 hour.

Fig. S51. ESI-MS (m/z^{2+}) in water of complex **2**.

Fig. S52. ESI-MS (m/ z^{2+}) in water for reaction of complex **2** after with ascorbic acid (1:5), under air, after 24 h.