Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting information

for

Highly cytotoxic gold(I)-phosphane dithiocarbamate complexes trigger an ER

stress-dependent immune response in ovarian cancer cells

Hai Van Le,^{*a*, ≠} Maria V. Babak,^{*a*, ≠} Muhammad Ali Ehsan,^{*b*}‡ Muhammad Altaf,^{*b*,*c*} Lisa Reichert,^{*a*}

Artem L. Gushchin,^{d,e} Wee Han Ang,^{a,f*} Anvarhusein A. Isab^{g*}

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore ^bCenter of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ^cDepartment of Chemistry, Government University College Lahore, Pakistan ^dNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia ^eNovosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia ^fNUS Graduate School for Integrative Sciences and Engineering, Singapore; e-mail: <u>chmawh@nus.edu.sg</u> ^gDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; ^g Both authors contributed equally to this manuscript e-mail: <u>aisab@kfupm.edu.sa</u>

Table S1. Crystal data and details of data collection for 1, 2', 3 and 4.

Table S2. Key bond lengths and angles observed in the molecular structures of 1, 3 and 4.

Table S3. Cytotoxicity of complex 2, auranofin and cDDP in presence or absence of antioxidants.

Figure S1. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 1 in pyridine-d⁵.

Figure S2. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 2 in pyridine-d⁵.

Figure S3. ¹H NMR spectra of 2 in DMSO-d⁶ immediately after dissolution and 10 d after dissolution.

Figure S4. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 3 in CDCl₃ immediately after dissolution.

Figure S5. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 4 in MeOH-d⁴ immediately after dissolution.

Figure S6. ¹H NMR spectra of **4** in DMSO-d⁶ immediately after dissolution (top) and 5 min, 4 h and 14 d after dissolution (bottom).

Figure S7. High resolution EI-MS spectrum of 1.

Figure S8. High resolution EI-MS spectrum of 2.

Figure S9. High resolution EI-MS spectrum of 3.

Figure S10. High resolution EI-MS spectrum of 4.

Figure S11. FT-IR spectra of 1-4.

Figure S12. Molecular structure of 4.

Figure S13. Concentration-effect curves of **1-4**, auranofin and cDDP in the human ovarian carcinoma cell lines A2780 and A2780cis obtained by the MTT assay using exposure times of 72 h.

Figure S14. Concentration-effect curves of **2** and cDDP in the human ovarian carcinoma cell line A2780 obtained by the MTT assay using exposure times of 24 h in presence or absence of antioxidants.

Figure S15. Cell cycle analysis of A2780 cells treated with 2, auranofin and cisplatin for 24 h.

Complex	1	2'	3	4
CCDC number	1996351	1996352	1996353	1996354
Empirical formula	C23.50H34AuClNPS2	$C_{40.50}H_{81}Au_8C_1N_8S_{16}$	C ₂₇ H ₄₁ AuNPS ₂	C29H45AuNPS2
Fw	658.02	2804.27	671.66	699.71
Crystal system	monoclinic	orthorhombic	monoclinic	triclinic
Space group	C2/c	Fdd2	$P2_{1}/c$	ΡĪ
<i>a</i> , Å	35.3443(12)	26.0916(10)	10.9925(4)	9.5931(2)
b, Å	11.0755(4)	44.773(2)	13.0068(4)	11.3803(3)
<i>c</i> , Å	30.2179(11)	24.5430(10)	19.4730(6)	15.1080(3)
α, deg	90	90	90	107.692(1)
β, deg	118.915(1)	90	97.2120(13)	104.572(1)
γ, deg	90	90	90	96.872(1)
V, Å ³	10354.4(6)	28671(2)	2762.17(16)	1486.02(6)
Ζ	16	16	4	2
λ, Å	0.71073	0.71073	0.71073	0.71073
$\rho_{\rm calcd}, {\rm g \ cm^{-3}}$	1.688	2.599	1.615	1.564
Crystal size, mm ³	0.477 x 0.250 x	0.097 x 0.083 x	0.487 x 0.236 x	0.338 x 0.180 x
	0.226	0.043	0.104	0.126
Т, К	100(2)	100(2)	100(2)	100(2)
μ, cm ⁻¹	60.21	168.45	55.51	51.62
Reflns collected/unique	50858	185714	26804	30790
$[\mathbf{R}_{int}]$	0.0309	0.0923	0.0288	0.0313
R1 ^a	0.0231	0.0284	0.0248	0.0174
wR2 ^b	0.0475	0.0434	0.0583	0.0380
GOF ^c	1.065	1.021	1.118	1.059

Table S1. Crystal data and details of data collection for 1, 2', 3, 4.

^a $R_1 = \Sigma ||Fo| - Fc||/\Sigma |Fo|$

^b $wR2 = {\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2}^{1/2}$

^c GOF = { Σ [w(Fo² - Fc²)²]/(*n*-*p*)^{1/2}, where *n* is the number of reflections and *p* is the total number of parameters refined.

Bond lengths (Å) and	Compound			
angles (°)	1	3	4	
CCDC number	1996351	1996353	1996354	
Au1-P1 / Å	2.2710(7)	2.2688(7)	2.2677(5)	
Au1-S1 / Å	2.3202(7)	2.3344(8)	2.3415(5)	
C7-C8 / Å	1.400(4)	1.401(4)	1.404(3)	
C7-C12 / Å	1.409(4)	1.412(4)	1.412(3)	
C8-C9 / Å	1.385(4)	1.375(5)	1.376(3)	
C9-C10 / Å	1.388(4)	1.375(5)	1.387(3)	
C10-C11 / Å	1.383(4)	1.392(4)	1.386(3)	
C11-C12 / Å	1.407(4)	1.405(4)	1.402(3)	
P1-C12 / Å	1.835(3)	1.834(3)	1.837(2)	
P1-C13 / Å	1.883(3)	1.889(3)	1.887(2)	
P1-C17 / Å	1.884(3)	1.890(3)	1.880(2)	
S1-C21 / Å	1.758(3)	1.745(3)	1.744(2)	
S2-C21 / Å	1.686(3)	1.699(3)	1.693(2)	
N1-C21 / Å	1.342(3)	1.332(4)	1.353(3)	
N1-C22 / Å	1.449(4)	1.447(5)	1.476(3)	
N1-C23 / Å	1.461(4)	1.564(5)	1.474(3)	
P1-Au1-S1 / °	174.99(3)	171.37(3)	172.967(18)	
C21-S1-Au1 / °	101.38(9)	98.92(11)	98.18(7)	
C12-P1-Au1 / °	116.06(8)	106.36(10)	114.91(7)	
C7-C12-P1 / °	122.82(19)	123.0(2)	122.70(15)	
C11-C12-P1 / °	119.0(2)	119.1(2)	118.85(15)	
S2-C21-S1 / °	122.03(16)	118.20(19)	119.33(12)	
N1-C21-S1 / °	115.8(2)	120.4(3)	118.08(16)	
N1-C21-S2 / °	122.1(2)	121.5(3)	122.58(16)	
C21-N1-C22 / °	122.9(2)	130.4(4)	120.20(18)	
C21-N1-C23 / °	122.9(2)	116.7(3)	123.06(18)	
C23-N1-C22 / °	114.1(2)	112.8(3)	115.52(18)	

Table S2. Key bond lengths and angles observed in the molecular structures of 1, 3 and 4.

Table S3. Cytotoxicity of **2**, auranofin and cDDP in presence or absence of antioxidants (NAC – *N*-acetyl cysteine, KI – potassium iodide, AA – acetic acid)

	$IC_{50} [nm]^a$				
Compound	No antioxidants	NAC	KI	AA	
2	49 ± 16	113 ± 42	48 ± 12	33 ± 7	
cisplatin	7867 ± 1444	10827 ± 380	8906 ± 1207	6826 ± 2796	

^{*a*} 50% inhibitory concentrations in A2780 cells determined by MTT assay after 2 h preincubation with respective antioxidants and 24 h co-incubation with $\mathbf{2}$, auranofin and cDDP

Figure S1. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 1 in pyridine-d⁵.

Figure S2. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 2 in pyridine-d⁵.

Figure S3. ¹H NMR spectra of 2 in DMSO-d⁶ immediately after dissolution and 10 d after dissolution.

Figure S4. ¹H NMR (top) and ³¹P NMR (bottom) spectra of 3 in CDCl₃ immediately after dissolution.

Figure S5. ¹H NMR (top) and ³¹P NMR (bottom) spectra of **4** in methanol-d⁴ immediately after dissolution.

Figure S6. ¹H NMR spectra of **4** in DMSO-d⁶ immediately after dissolution (top) and 5 min, 4 h and 14 d after dissolution (bottom).

Figure S7. High resolution EI-MS spectrum of 1.

Figure S8. High resolution EI-MS spectrum of 2.

Figure S9. High resolution EI-MS spectrum of 3.

Figure S10. High resolution EI-MS spectrum of 4.

Figure S11. FT-IR spectra of 1-4.

Figure S12. Molecular structure of **4**. Non-H atoms are represented by thermal ellipsoids of 50% probability levels.

Figure S13. Concentration-effect curves of **1-4**, auranofin and cDDP in the in the human ovarian carcinoma cell lines A2780 and A2780cis obtained by the MTT assay using exposure times of 72 h.

Figure S14. Concentration-effect curves of 2 and cDDP in the human ovarian carcinoma cell line A2780 obtained by the MTT assay using exposure times of 24 h in presence or absence of antioxidants (AA – ascorbic acid, NAC – N-acetyl cysteine, KI – potassium iodide).

