## **SUPPORTING INFORMATION**

## Supercritical Hydrothermal Synthesis of MoS<sub>2</sub> Nanosheets with Controllable Layer Number and Phase Structure

Yuki Takahashi<sup>a</sup>, Yuta Nakayasu<sup>\*b</sup>, Kazuyuki Iwase<sup>a</sup>, Hiroaki Kobayashi<sup>a</sup>, and Itaru Honma<sup>a</sup>

a. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan.

b. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-6-11 Aoba, Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan.

\*Corresponding author: <u>nakayasu@tohoku.ac.jp</u>

Tel: 022(217)5816; Fax: 022(217)5828

Total number of pages:11 Total number of figures: 9 Total number of tables: 4

| Table of | f Contents |
|----------|------------|
|----------|------------|

| Figure S2       .S3         Figure S3       .S4         Figure S4       .S5         Figure S5       .S7         Figure S6       .S8         Figure S7       .S9         Figure S9       .S11         Table S1       .S3         Table S2       .S5         Table S3       .S6         Table S4       .S6 | Figure S1 | S2  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| Figure S3                                                                                                                                                                                                                                                                                                | Figure S2 | S3  |
| Figure S4.       S5         Figure S5.       S7         Figure S6.       S8         Figure S7.       S9         Figure S8.       S10         Figure S9.       S11         Table S1.       S3         Table S2.       S5         Table S3.       S6         Table S4.       S6                            | Figure S3 | S4  |
| Figure S5.       S7         Figure S6.       S8         Figure S7.       S9         Figure S8.       S10         Figure S9.       S11         Table S1.       S3         Table S2.       S5         Table S3.       S6         Table S4.       S6                                                        | Figure S4 |     |
| Figure S6.       S8         Figure S7.       S9         Figure S8.       S10         Figure S9.       S11         Table S1.       S3         Table S2.       S5         Table S3.       S6         Table S4.       S6                                                                                    | Figure S5 | S7  |
| Figure S7.       S9         Figure S8.       S10         Figure S9.       S11         Table S1.       S3         Table S2.       S5         Table S3.       S6         Table S4.       S6                                                                                                                | Figure S6 | S8  |
| Figure S8                                                                                                                                                                                                                                                                                                | Figure S7 |     |
| Figure S9.S11Table S1.S3Table S2.S5Table S3.S6Table S4.S6                                                                                                                                                                                                                                                | Figure S8 | S10 |
| Table S1       .S3         Table S2       .S5         Table S3       .S6         Table S4       .S6                                                                                                                                                                                                      | Figure S9 | S11 |
| Table S2S5Table S3S6Table S4S6                                                                                                                                                                                                                                                                           | Table S1  |     |
| Table S3                                                                                                                                                                                                                                                                                                 | Table S2  |     |
| Table S4                                                                                                                                                                                                                                                                                                 | Table S3  | S6  |
|                                                                                                                                                                                                                                                                                                          | Table S4  | S6  |



**Figure S1** SEM images of (a) pristine MoO<sub>3</sub> and (b) Ball-milled MoO<sub>3</sub>, (c) The XRD patterns of MoO<sub>3</sub> before and after the ball-milling

| Temperature [°C] | Degree [20] | FWHM |
|------------------|-------------|------|
| 400              | 33.5        | 1.74 |
| 350              | 33.3        | 1.84 |
| 300              | 33.3        | 3.00 |

**Table S1** FWHM of 100 plane of synthesized in 30 mins at different reaction temperature.



Figure S2 The XRD patterns of synthesized samples (a) Products synthesized with AA as a reducing agent in 300°C for different reaction times (b) Products synthesized with AA as a reducing agent at 350°C for different reaction times (c) Products synthesized with AA as a reducing agent at 500°C for 30 min (d) Products synthesized at 200°C for 24 hour with different reducing agents.



Figure S3 The result of XRD patterns of samples synthesized using different organic substances



Figure S4 The results of GC-MS measurement for filtrate after MoS2 synthesis reaction with AA under different conditions (a)400°C, 6 min (b) 400°C, 10 min (c) 400°C, 30 min (d)Room temperature, 30min

| Time [min] | Peak number | Name of substance |
|------------|-------------|-------------------|
| 9.0543     | 1           | Acetaldehyde      |
| 10.9285    | 2           | Ethanol           |
| 13.184     | 3           | Furan             |
| 13.3366    | 4           | Acetone           |
| 16.5292    | 5           | Diacetyl          |
| 17.39      | 6           | Crotonaldehyde    |
| 17.9567    | 7           | Thiophene         |
| 21.0512    | 8           | Furfural          |

Table S2 The result of GC-MS measurement for filtrate after the reaction (AA 6 min)

| Time [min] | Peak number | Name of substance     |
|------------|-------------|-----------------------|
| 9.0544     | 9           | Acetaldehyde          |
| 10.9721    | 10          | Ethanol               |
| 13.1732    | 11          | Furan                 |
| 13.3367    | 12          | Acetone               |
| 16.5838    | 13          | 2-Methylfuran         |
| 16.7908    | 14          | 3-Methylfuran         |
| 17.3901    | 15          | Crotonaldehyde        |
| 17.9458    | 16          | Thiophene             |
| 19.3841    | 17          | 2-Ethylfuran          |
| 20.7135    | 18          | 3-Methylthiophene     |
| 20.877     | 19          | 3-Methylthiophene     |
| 21.0622    | 20          | Furfural              |
| 23.0998    | 21          | 2-Ethylthiophene      |
| 23.2197    | 22          | 2,4-Dimethylthiophene |
| 23.2177    | 23          | 2,3-Dimethylthiophene |

Table S3 The result of GC-MS measurement for filtrate after the reaction (AA 10 min)

Table S4 The result of GC-MS measurement for filtrate after the reaction (AA 30 min)

| Time [min] | Peak number | Name of substance            |
|------------|-------------|------------------------------|
| 13.1842    | 24          | Furan                        |
| 13.3368    | 25          | Acetone                      |
| 16.6275    | 26          | 2-Butanone                   |
| 17.9459    | 27          | Tiophene                     |
| 18.2837    | 28          | 1,3-Hexadien-5-yne           |
| 19.3624    | 29          | 2-Pentanone                  |
| 20.6482    | 30          | Cyclopentanone               |
| 20.7136    | 31          | 3-Methylthiophene            |
| 20.8771    | 32          | 3-Methylthiophene            |
| 21.0732    | 33          | Toluene                      |
| 22.98      | 34          | 2-Methyl-2-cyclopenten-1-one |
| 23.089     | 35          | 2-Ethyltiophene              |
| 23.2198    | 36          | 2,5-Dimethylthiophene        |
| 23.3178    | 37          | 2,4-Dimethylthiophene        |
| 23.7973    | 38          | p-Xylene                     |



**Figure S5** The results of GC-MS measurement for filtrate after the MoS<sub>2</sub> synthesis reaction with FA (a) 400°C, 6 min (b) 400°C, 10 min (c) 400°C, 30 min (d)Room temperature, 30min



**Figure S6** The comparison of XRD patterns of samples synthesized with Furan, Furfural and ascorbic acid. Furan and Furfural is formed by decomposition of AA.



**Figure S7** XPS spectra of synthesized samples. (a) Products synthesized with AA as a reducing agent for different reaction times. (b) Products synthesized with FA as a reducing agent for different reaction times.



Figure S8 Raman spectrum of the sample synthesized with AA for 12 min.





**Figure S9** SEM images of (a) pristine MoO<sub>2</sub> and (b) Ball-milled MoO<sub>2</sub>, (c) The XRD patterns of synthesized samples using MoO<sub>2</sub> as a precursor and AA as a reducing agent for 30 mins.