Two Azido-Bridged [2 $\times 2$] Cobalt(II) Grids Featuring SingleMolecule Magnet Behaviour

Zhilin Guo, ${ }^{\text {ab }}$ Yi-Fei Deng,*a Yipei Zhang, ${ }^{\text {a }}$ Zoe Pikramenou, ${ }^{\text {b }}$ Yuan-Zhu Zhang*a
${ }^{\text {a }}$ Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
${ }^{\mathrm{b}}$ School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

Experimental Section

Materials and Physical Measurements.

3, 6-di(pyridin-2-yl)pyridazine (pydz) ligand and other chemicals are commercially available and used as received. 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (pzdz) was synthesised according to the literature. ${ }^{1}$ Elemental analyses (C, H, N) were measured by a vario EL cube CHNOS Elemental Analyzer Elementar Analysensysteme GmbH. FT-IR spectra were recorded in the range $600-4000 \mathrm{~cm}^{-1}$ on a Bruker tensor II spectrophotometer. Powder X-ray diffraction (PXRD) measurements were recorded on a Rigaku Smartlab X-ray diffractometer. A PXRD pattern for 1 could not be obtained due to the loss of CHCl_{3} interstitial solvent molecules. Magnetic measurements were carried out with a SQUID MPMS3 magnetometer. Magnetic data were corrected for the diamagnetism of the sample holder and for the diamagnetism of the sample using Pascal's constants. ${ }^{2}$
Caution: Although no such behavior was observed during the experiment, azido salts are potentially explosive and should be handled with care.

Synthesis of $\left\{\left[\mathrm{Co}^{\mathbf{I I}}{ }_{4}(\mathbf{p z d z})_{4}\left(\mathbf{N}_{3}\right)_{4}\right]\left[\mathrm{BPh}_{4}\right]_{4}\right\} \cdot \mathbf{4 C H} \mathbf{3} \mathbf{C N} \cdot \mathbf{3 C H C l} \mathbf{C H}_{\mathbf{3}} \cdot \mathbf{2 C H} \mathbf{3} \mathbf{O H}$ (1). Treatment of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(72.5 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{NaBPh}_{4}(135 \mathrm{mg}, 0.39 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$ afforded a blue-greenish solution with white precipitate (NaCl), which was filtered off after 20 min .

Pzdz ($90 \mathrm{mg}, 0.31 \mathrm{mmol}$) in chloroform 5 mL , and $\mathrm{NaN}_{3}(24.5 \mathrm{mg}, 0.38 \mathrm{mmol}$) in methanol (5 mL), were added to the above solution. The resulting red solution was allowed to stand quietly for several days. Orange plate-like crystals were isolated via filtration, washed with methanol and dried in the air. Yield: $123 \mathrm{mg}\left(48.3 \%\right.$ based on Co salt).Selected IR data (cm^{-1}): $2070(\mathrm{~s}), 1478(\mathrm{~m}), 1432(\mathrm{~s})$, 1354 (m), 1275 (w), 1137 (w), 1094 (m), 1043 (m), 982 (m). Anal. Calcd. $\mathrm{C}_{165} \mathrm{H}_{166} \mathrm{~B}_{4} \mathrm{~N}_{40} \mathrm{O}_{2} \mathrm{Cl}_{9} \mathrm{Co}_{4}$: C, 61.15; H, 5.20; N, 17.39. Found C, 60.71; H, 5.46; N, 17.15.

Synthesis of $\left\{\left[\mathrm{Co}^{\mathrm{II}} \mathbf{4}(\mathbf{p y d z})_{\mathbf{4}}\left(\mathbf{N}_{\mathbf{3}}\right)_{\mathbf{4}}\right]\left[\mathrm{BPh}_{4}\right]_{4}\right\} \cdot \mathbf{4 C H} \mathbf{3} \mathbf{C N}$ (2). The synthesis of $\mathbf{2}$ was similar to 1 using pydz ligand instead. Orange block crystals were collected by filtration and washed with cold methanol and dried in the air. Yield 150 mg (70% based on Co salt). Selected IR data (cm^{-1}): 2065 (s), 1433 (m), 1354 (m), 986 (m). Anal. Calcd. $\mathrm{C}_{156} \mathrm{H}_{126} \mathrm{~B}_{4} \mathrm{Co}_{4} \mathrm{~N}_{30}: \mathrm{C}$, 69.40; H, 4.70; N, 15.56. Found C, 69.48; H, 4.29; N, 15.55.

Crystallography

X-ray data for $\mathbf{1}$ and $\mathbf{2}$ were collected on a Bruker D8 VENTURE diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. Lorentz/polarization corrections were applied during data reduction and the structures were solved by direct methods (SHELXS-97). Refinements were performed by full-matrix least squares (SHELXL-97) ${ }^{3}$ on F^{2} and empirical absorption corrections (SADABS) ${ }^{4}$ were applied. Anisotropic thermal parameters were used for the nonhydrogen atoms. Hydrogen atoms were added at calculated positions and refined using a riding model. Weighted R factors $(w \mathrm{R})$ and the goodness-of-fit (S) values are based on F^{2}; conventional R factors (R) are based on F, with F set to zero for negative F^{2}. CCDC-1945133 (1) and 1945134 (2) contain the crystallographic data that can be obtained via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Table S1. Selected bond lengths $[\AA$] and angles [deg] for $\mathbf{1 .}$

$\mathrm{Co}(1)-\mathrm{N}(22)$	$2.175(2)$	$\mathrm{Co}(2)-\mathrm{N}(28)$	$2.071(2)$
$\mathrm{Co}(1)-\mathrm{N}(25)$	$2.076(2)$	$\mathrm{Co}(2)-\mathrm{N}(4)$	$2.171(2)$
$\mathrm{Co}(1)-\mathrm{N}(3)$	$2.157(2)$	$\mathrm{Co}(2)-\mathrm{N}(7)$	$2.112(2)$
$\mathrm{Co}(1)-\mathrm{N}(24)$	$2.119(2)$	$\mathrm{Co}(2)-\mathrm{N}(25)$	$2.092(2)$
$\mathrm{Co}(1)-\mathrm{N}(34)$	$2.078(2)$	$\mathrm{Co}(2)-\mathrm{N}(9)$	$2.167(2)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.122(2)$	$\mathrm{Co}(2)-\mathrm{N}(6)$	$2.120(2)$
$\mathrm{Co}(3)-\mathrm{N}(15)$	$2.171(2)$	$\mathrm{Co}(4)-\mathrm{N}(16)$	$2.140(2)$
$\mathrm{Co}(3)-\mathrm{N}(28)$	$2.064(2)$	$\mathrm{Co}(4)-\mathrm{N}(34)$	$2.087(2)$
$\mathrm{Co}(3)-\mathrm{N}(13)$	$2.146(2)$	$\mathrm{Co}(4)-\mathrm{N}(18)$	$2.134(2)-\mathrm{N}(31)$
$\mathrm{Co}(3)-\mathrm{N}(10)$	$2.161(2)$	$\mathrm{Co}(4)-\mathrm{N}(21)$	$2.093(2)$
$\mathrm{Co}(3)-\mathrm{N}(31)$	$2.095(2)$	$\mathrm{Co}(4)-\mathrm{N}(19)$	$2.137(2)$
$\mathrm{Co}(3)-\mathrm{N}(12)$	$2.112(2)$	$\mathrm{N}(28)-\mathrm{Co}(3)-\mathrm{N}(13)$	$93.47(8)$
$\mathrm{N}(25)-\mathrm{Co}(1)-\mathrm{N}(22)$	$89.35(8)$	$\mathrm{N}(28)-\mathrm{Co}(3)-\mathrm{N}(10)$	$87.13(8)$
$\mathrm{N}(25)-\mathrm{Co}(1)-\mathrm{N}(3)$	$86.61(8)$	$\mathrm{N}(28)-\mathrm{Co}(3)-\mathrm{N}(31)$	$97.59(8)$
$\mathrm{N}(25)-\mathrm{Co}(1)-\mathrm{N}(24)$	$96.63(8)$	$\mathrm{N}(28)-\mathrm{Co}(3)-\mathrm{N}(12)$	$158.46(8)$
$\mathrm{N}(25)-\mathrm{Co}(1)-\mathrm{N}(34)$	$97.39(8)$		$91.21(8)$
$\mathrm{N}(25)-\mathrm{Co}(1)-\mathrm{N}(1)$	$159.40(8)$		

$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(22)$	$174.21(8)$	$\mathrm{N}(13)-\mathrm{Co}(3)-\mathrm{N}(15)$	$73.72(8)$
$\mathrm{N}(24)-\mathrm{Co}(1)-\mathrm{N}(22)$	$74.21(8)$	$\mathrm{N}(13)-\mathrm{Co}(3)-\mathrm{N}(10)$	$114.38(8)$
$\mathrm{N}(24)-\mathrm{Co}(1)-\mathrm{N}(3)$	$110.37(8)$	$\mathrm{N}(10)-\mathrm{Co}(3)-\mathrm{N}(15)$	$171.81(8)$
$\mathrm{N}(24)-\mathrm{Co}(1)-\mathrm{N}(1)$	$84.67(8)$	$\mathrm{N}(31)-\mathrm{Co}(3)-\mathrm{N}(15)$	$86.13(8)$
$\mathrm{N}(34)-\mathrm{Co}(1)-\mathrm{N}(22)$	$85.29(8)$	$\mathrm{N}(31)-\mathrm{Co}(3)-\mathrm{N}(13)$	$157.20(8)$
$\mathrm{N}(34)-\mathrm{Co}(1)-\mathrm{N}(3)$	$91.12(8)$	$\mathrm{N}(31)-\mathrm{Co}(3)-\mathrm{N}(10)$	$86.13(8)$
$\mathrm{N}(34)-\mathrm{Co}(1)-\mathrm{N}(24)$	$154.95(8)$	$\mathrm{N}(31)-\mathrm{Co}(3)-\mathrm{N}(12)$	$91.30(8)$
$\mathrm{N}(34)-\mathrm{Co}(1)-\mathrm{N}(1)$	$89.38(8)$	$\mathrm{N}(12)-\mathrm{Co}(3)-\mathrm{N}(15)$	$109.02(8)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(22)$	$110.66(8)$	$\mathrm{N}(12)-\mathrm{Co}(3)-\mathrm{N}(13)$	$85.46(8)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	$73.78(8)$	$\mathrm{N}(12)-\mathrm{Co}(3)-\mathrm{N}(10)$	$73.88(8)$
$\mathrm{N}(28)-\mathrm{Co}(2)-\mathrm{N}(4)$	$91.75(8)$	$\mathrm{N}(34)-\mathrm{Co}(4)-\mathrm{N}(16)$	$86.49(8)$
$\mathrm{N}(28)-\mathrm{Co}(2)-\mathrm{N}(7)$	$157.64(8)$	$\mathrm{N}(34)-\mathrm{Co}(4)-\mathrm{N}(18)$	$89.80(8)$
$\mathrm{N}(28)-\mathrm{Co}(2)-\mathrm{N}(25)$	$101.15(8)$	$\mathrm{N}(34)-\mathrm{Co}(4)-\mathrm{N}(31)$	$102.55(8)$
$\mathrm{N}(28)-\mathrm{Co}(2)-\mathrm{N}(9)$	$86.81(8)$	$\mathrm{N}(34)-\mathrm{Co}(4)-\mathrm{N}(21)$	$87.17(8)$
$\mathrm{N}(28)-\mathrm{Co}(2)-\mathrm{N}(6)$	$91.88(8)$	$\mathrm{N}(34)-\mathrm{Co}(4)-\mathrm{N}(19)$	$159.67(8)$
$\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{N}(4)$	$108.90(8)$	$\mathrm{N}(18)-\mathrm{Co}(4)-\mathrm{N}(16)$	$73.96(8)$
$\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{N}(9)$	$73.26(8)$	$\mathrm{N}(18)-\mathrm{Co}(4)-\mathrm{N}(21)$	$108.39(8)$
$\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{N}(6)$	$85.88(8)$	$\mathrm{N}(31)-\mathrm{Co}(4)-\mathrm{N}(16)$	$86.91(8)$
$\mathrm{N}(25)-\mathrm{Co}(2)-\mathrm{N}(4)$	$85.50(8)$	$\mathrm{N}(31)-\mathrm{Co}(4)-\mathrm{N}(18)$	$156.63(8)$
$\mathrm{N}(25)-\mathrm{Co}(2)-\mathrm{N}(7)$	$89.26(8)$	$\mathrm{N}(31)-\mathrm{Co}(4)-\mathrm{N}(21)$	$92.16(8)$
$\mathrm{N}(25)-\mathrm{Co}(2)-\mathrm{N}(9)$	$90.35(8)$	$\mathrm{N}(31)-\mathrm{Co}(4)-\mathrm{N}(19)$	$85.61(8)$
$\mathrm{N}(25)-\mathrm{Co}(2)-\mathrm{N}(6)$	$156.11(8)$	$\mathrm{N}(21)-\mathrm{Co}(4)-\mathrm{N}(16)$	$173.24(8)$
$\mathrm{N}(9)-\mathrm{Co}(2)-\mathrm{N}(4)$	$175.27(8)$	$\mathrm{N}(19)-\mathrm{Co}(4)-\mathrm{N}(16)$	$112.76(8)$
$\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(4)$	$74.06(8)$	$\mathrm{N}(19)-\mathrm{Co}(4)-\mathrm{N}(18)$	$89.48(8)$
$\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(9)$	$110.47(8)$	$\mathrm{N}(19)-\mathrm{Co}(4)-\mathrm{N}(21)$	$73.81(8)$

Table S2. Selected bond lengths $[\AA]$ and angles $[\mathrm{deg}]$ for $\mathbf{2}$.

$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.142(1)$	$\mathrm{Co}(1)-\mathrm{N}(2)$	$2.124(1)$
$\mathrm{Co}(1)-\mathrm{N}(3 \mathrm{~B})$	$2.137(1)$	$\mathrm{Co}(1)-\mathrm{N}(4 \mathrm{~B})$	$2.174(1)$
$\mathrm{Co}(1)-\mathrm{N}(5)$	$2.068(1)$	$\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$2.077(1)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(5)$	$92.99(5)$	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$157.97(5)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(2)$	$75.21(5)$	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3 \mathrm{~B})$	$104.29(5)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(4 \mathrm{~B})$	$81.07(5)$	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(5)$	$98.58(5)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(4 \mathrm{~B})$	$101.10(5)$	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$85.84(5)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3 \mathrm{~B})$	$175.65(5)$	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$93.75(5)$
$\mathrm{N}(3 \mathrm{~B})-\mathrm{Co}(1)-\mathrm{N}(4 \mathrm{~B})$	$74.57(5)$	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Co}(1)-\mathrm{N}(5)$	$85.76(5)$
$\mathrm{N}(4 \mathrm{~B})-\mathrm{Co}(1)-\mathrm{N}(5)$	$157.19(5)$	$\mathrm{N}(4 \mathrm{~B})-\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$91.90(5)$
$\mathrm{N}(5)-\mathrm{Co}(1)-\mathrm{N}(5 \mathrm{~A})$	$100.96(7)$		

Symmetry transformations used to generate equivalent atoms:
A: $y+1 / 4,-x+7 / 4,-z+3 / 4$
B: $-y+7 / 4, x-1 / 4,-z+3 / 4$

Table S3. Parameters fitted by a generalized Debye model for $\mathbf{1}$ at 1500 Oe dc field.

T / K	τ / s	α
2.0	1.02×10^{-1}	0.39
2.1	6.29×10^{-2}	0.39
2.2	3.52×10^{-2}	0.39
2.3	1.85×10^{-2}	0.38
2.4	1.04×10^{-2}	0.37
2.5	5.65×10^{-3}	0.36
2.6	3.23×10^{-3}	0.35
2.7	1.88×10^{-3}	0.35
2.8	1.17×10^{-3}	0.34
2.9	7.43×10^{-4}	0.33
3.0	4.96×10^{-4}	0.31
3.1	3.29×10^{-4}	0.31
3.2	2.27×10^{-4}	0.30
3.3	1.59×10^{-4}	0.28
3.4	1.25×10^{-4}	0.26

Table S4. Parameters fitted by a generalized Debye model for 2 at 2000 Oe dc field.

T / K	τ / s	α
3.0	7.73×10^{-2}	0.32
3.1	3.99×10^{-2}	0.26
3.2	2.29×10^{-2}	0.21
3.3	1.40×10^{-2}	0.16
3.4	8.70×10^{-3}	0.14
3.5	5.62×10^{-3}	0.12
3.6	3.64×10^{-3}	0.10
3.7	2.42×10^{-3}	0.09
3.8	1.63×10^{-3}	0.08
3.9	1.11×10^{-3}	0.06
4.0	7.74×10^{-4}	0.05
4.1	5.50×10^{-4}	0.04
4.2	3.96×10^{-4}	0.03
4.3	2.78×10^{-4}	0.05
4.4	1.97×10^{-4}	0.06
4.5	1.33×10^{-4}	0.07

Fig. S1 Powder X-ray diffraction pattern and the simulation from the single crystal data of $\mathbf{2}$.
(a)

(b)

Fig. S2 The packing diagram of $\mathbf{1}$ (a) and 2 (b). The dashed line shows the nearest intermolecular Co \cdots Co separation. Hydrogen atoms, counter anions and interstitial solvent molecules are omitted for clarify. Colour codes: $\mathrm{Co}(\mathrm{II})$, green; C, grey; N, light blue.

Fig. S3 Temperature dependent χ^{-1} plots for 1 measured at 1000 Oe dc field. The red line represents the Curie-Weiss fit to the data.

Fig. S4 Temperature dependent χ^{-1} plots for $\mathbf{2}$ measured at 1000 Oe dc field. The red line represents the Curie-Weiss fit to the data.

Fig. S5 Reduced magnetization data for 1 at 2-5 K. The solid lines represent the fit to the data.

Fig. S6 Reduced magnetization data for $\mathbf{2}$ at 2-5 K. The solid lines represent the fit to the data.

Fig. S7 Frequency dependence of the out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for $\mathbf{1}$ as a function of applied field at 3 K . The lines are guides to the eye.

Fig. S8 Frequency dependence of the out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for $\mathbf{2}$ as a function of applied field at 3 K . The lines are guides to the eye.

Fig. S9 Temperature dependence of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for $\mathbf{1}$ under 1500 Oe dc field. Solid lines are guides for the eye.

Fig. S10 Temperature dependence of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for 2 under 2000 Oe dc field. Solid lines are guides for the eye.

Fig. S11 Frequency dependence of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for $\mathbf{1}$ under 1500 Oe dc field. Solid lines are guides for the eye.

Fig. S12 Frequency dependence of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for 2 under 2000 Oe dc field. Solid lines are guides for the eye.

Fig. S13 Cole-Cole plots of 1 under 1500 Oe dc field. The lines represent the fit to the data.

Fig. S14 Cole-Cole plots of 2 under 2000 Oe dc field. The lines represent the fit to the data.

Fig. S15 Temperature dependence of the relaxation time for $\mathbf{1}$ under 1500 Oe dc field. The line represents the fit by Arrhenius Law.

Fig. S16 Temperature dependence of the relaxation time for $\mathbf{2}$ under 2000 Oe dc field. The line represents the fit by Arrhenius Law.

Fig. S17 Magnetic hysteresis measurements of 1 recorded at 2.0 K with field sweep rate of 20,50 and $100 \mathrm{Oe} / \mathrm{s}$.

Fig. S18 Magnetic hysteresis measurements of $\mathbf{2}$ recorded at 2.0 K with field sweep rate of 20,50 and $100 \mathrm{Oe} / \mathrm{s}$.

References

1 L. K. Thompson, T. C. Woon, D. B. Murphy, E. J. Gabe, F. L. Lee, and Y. Le Page, Inorg. Chem. 1985, 24, 4719.

2 G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
3 (a) Sheldrick, G. M., SHELXL-2014, Program for the solution of crystal structures. University of Göttingen, Göttingen, Germany, 2014; (b) Sheldrick, G. M., SHELXL-2014, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany, 2014.

4 Sheldrick, G. M., SADABS, v.2.01, Bruker/Siemens Area Detector Absorption Correction Program. Bruker AXS: Madison, Wisconism, 1998.

