SUPPLEMENTARY INFORMATION FOR

Investigations on Antiproliferative Activity and Apoptosis Mechanism of New Arene Ru(II) Carbazole based Hydrazone Complexes

Thangavel Sathiya Kamatchi,^a Mohamed Kasim Mohamed Subarkhan,^b Rengan Ramesh,^{a*} Hangxiang Wang,^b Jan Grzegorz Małecki^c

^aCentre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli- 620 024, Tamil Nadu, India.

^bThe First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.

^cDepartment of Crystallography, Institute of Chemistry, University of Silesia, 40-006, Katowice, Poland.

*To whom correspondence should be made: Tel: +91-431-2407053, Fax: +91-431-2407045, E-mail: ramesh_bdu@yahoo.com

CONTENTS

1.	Details for the materials and methods	S3
2.	Table of crystal data and refinement parameters for ligands and complexes	S4
3.	Table of selected bond lengths, angles and hydrogen bonding parameters for	S5, S6
	ligands & complexes	
4.	¹ H-NMR spectra of the ligands and complexes	S7-S9
5.	¹³ C-NMR spectra of the ligands and complexes	S10-S12
6.	Mass spectra of ligands	S13-S15
7.	Mass spectra of complexes	S16-S18
8.	Stability studies of the complexes	S19
9.	The cytotoxic effects of the complexes by MTT assay	S20, S21
10.	References	S22

Materials and Methods

Best commercial grade reactants and solvents were used for all the reactions. RuCl₃.3H₂O, Benzohydrazide, 4-bromobenzohydrazide and 4-methoxybenzohydrazide were purchased from sigma Aldrich. 2,3,4,9-tetrahydro-1H-carbazol-1-one¹and dimer ruthenium precursor $[(n^6-benzene)RuCl_2]_2$ were prepared² from the procedures as specified in the literature. The CHNS elementarVario EL III analyser was used to carry out the elemental analysis of Carbon, Hydrogen, Nitrogen at the Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Cochin. FT-IR spectra were recorded in KBR pellets in the range 4000–400 cm⁻¹ with Perkin-Elmer 597 spectrophotometer. Electronic spectra were recorded in chloroform solution using CARY 300 Bio UV-visible Varian spectrometer. The NMR spectral studies were carried out on a Bruker 400MHz spectrometer in presence of CDCl₃/[d6]-DMSO solvent using tetramethylsilane (TMS) as internal reference. Gemini A Ultra four-circle diffractometer with monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) was used to collect the X-ray intensity data at room temperature. Lorentz, polarization and empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm³ were applied. The structure was solved by the Patterson method and subsequently completed by the difference Fourier recycling. All the non-hydrogen atoms were refined anisotropically using the full-matrix, least-squares technique. The Olex2⁴ and SHELXS, SHELXL⁵ programs were used for all the calculations. Atomic scattering factors were incorporated in the computer programs.

Identification code	HL2	HL3	Complex 1	Complex 2	Complex 3
CCDC number	1872212	1872214	1916478	1872211	1916479
Empirical formula	C ₁₉ H ₁₆ BrN ₃ O	C ₂₀ H ₂₁ N ₃ O ₃	C ₂₅ H ₂₂ ClN ₃ ORu	C ₂₅ H ₂₁ BrClN ₃ ORu	C ₂₆ H ₂₄ ClN ₃ O ₂ Ru
Formula weight	382.26	351.40	516.97	595.88	547.00
Temperature/K	295(2)	295(2)	295(2)	295(2)	295(2)
Crystal system	orthorhombic	monoclinic	orthorhombic	Monoclinic	monoclinic
Space group	Pna21	P21/c	P2 ₁ 2 ₁ 2 ₁	P2 ₁ /n	P2 ₁ /n
a/Å	23.856(4)	10.8358(6)	9.5226(3)	11.6369(7)	11.4635(3)
b/Å	8.3192(18)	7.4023(4)	12.4404(5)	12.9702(7)	12.8709(4)
c/Å	17.006(3)	23.0943(14)	18.1571(7)	15.9325(8)	16.2088(4)
α/°	90	90	90	90	90
β/°	90	96.837(6)	90	109.950(6)	108.314(3)
γ/°	90	90	90	90	90
Volume/Å ³	3375.1(11)	1839.21(18)	2150.96(14)	2260.4(2)	2270.40(12)
Z	8	4	4	4	4
$\rho_{calc}g/cm^3$	1.505	1.269	1.596	1.751	1.600
μ/mm^{-1}	2.446	0.087	0.876	2.603	0.838
F(000)	1552.0	744.0	1048.0	1184.0	1112.0
Crystal size/mm ³	0.42 × 0.16 × 0.13	0.28 × 0.21 × 0.11	0.24 × 0.17 × 0.11	0.37 × 0.11 × 0.06	0.31 × 0.11 × 0.07
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.832 to 58.928	6.796 to 58.986	6.924 to 58.862	6.846 to 58.866	6.862 to 58.958
Index ranges	-32 ≤ h ≤ 30, -7 ≤ k ≤ 11, -16 ≤ l ≤ 23	-10 ≤ h ≤ 14, -7 ≤ k ≤ 10, -31 ≤ l ≤ 31	-11 ≤ h ≤ 12, -16 ≤ k ≤ 14, -24 ≤ l ≤ 18	-14 ≤ h ≤ 15, -17 ≤ k ≤ 16, -19 ≤ l ≤ 21	-14 ≤ h ≤ 14, -13 ≤ k ≤ 16, -21 ≤ l ≤ 21
Reflections collected	12148	9359	12111	15286	21470
Independent reflections	6459 [R _{int} = 0.0418, R _{sigma} = 0.0618]	4349 [R _{int} = 0.0251, R _{sigma} = 0.0352]	$\begin{array}{ll} 5159 & [R_{int} = \\ 0.0280, & R_{sigma} = \\ 0.0412] \end{array}$	5510 [R _{int} = 0.0293, R _{sigma} = 0.0370]	5480 [R _{int} = 0.0310, R _{sigma} = 0.0300]
Data/restraints/pa rameters	6459/1/447	4349/0/252	5159/0/290	5510/0/293	5480/0/299
Goodness-of-fit on F ²	1.029	1.020	1.048	1.049	1.043
Final R indexes [I>=2σ (I)]	$R_1 = 0.0564,$ w $R_2 = 0.1281$	$R_1 = 0.0530, wR_2 = 0.1227$	$R_1 = 0.0314, wR_2 = 0.0596$	$R_1 = 0.0326, WR_2 = 0.0670$	$R_1 = 0.0317,$ w $R_2 = 0.0728$
Final R indexes [all data]	$R_1 = 0.1077, \\ wR_2 = 0.1554$	$R_1 = 0.0880, \\ wR_2 = 0.1452$	$R_1 = 0.0406, wR_2 = 0.0639$	R ₁ = 0.0495, wR ₂ = 0.0741	$R_1 = 0.0448,$ $wR_2 = 0.0810$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.58	0.32/-0.25	0.66/-0.31	0.42/-0.68	0.63/-0.71

Table S1. Crystal data and structure refinement for the ligands and complexes

Bond length Å / Bond angles °	Complex 1	Complex 2	Complex 3
Ru(1)-O(1)	2.063(3)	2.0632(17)	2.0586(17)
Ru(1)-N(1)	2.112(3)	2.084(2)	2.0928(19)
Ru(1)-Cl(1)	2.414(11)	2.4151(7)	2.4187(7)
Ru-arene centroid	1.669	1.666	1.667
N(1)-N(2)	1.415(4)	1.402(3)	1.402(3)
N(1)-C(8)/C(9)	1.285(5)	1.306(3)	1.303(3)
0(1)-C(1)	1.304(4)	1.296(3)	1.296(3)
O(1)-Ru(1)-centroid _{benzene}	127.23	128.58	128.85
O(1)-Ru(1)-N(1)	76.55(11)	76.29(7)	76.28(7)
O(1)-Ru(1)-Cl(1)	86.81(8)	86.57(6)	86.65(5)
O(1)-C(1)-C(2)	117.3(3)	117.3(2)	117.6(2)
O(1)-C(1)-N(2)	125.6(3)	125.4(2)	125.1(2)
N(1)-Ru(1)-centroid _{benzene}	130.79	128.16	127.71
N(1)-Ru(1)-Cl(1)	87.76(9)	89.19(6)	89.86(6)
N(1)-N(2)-C(1)	111.5(3)	110.6(2)	110.96(18)
N(1)-C(8)/C(9)-C(9)/ C(10)	122.3(4)	122.0(2)	121.8(2)
N(1)-C(8)/C(9)-C(19)/ C(20)	123.2(3)	123.1(2)	123.1(2)
Cl(1)-Ru(1)-centroid _{benzene}	130.04	130.55	130.24
Cl(1)-Ru(1)-centroid _{metallacycle}	90.67	91.39	92.03
Centroid _{benzene} -Ru(1)- centroid _{metallacycle}	139.18	138.04	137.72
Ru(1)-N(1)-N(2)	111.8(2)	113.33(15)	112.65(14)
Ru(1)-N(1)-C(8)/C(9)	132.9(3)	130.12(17)	131.32(15)
Ru(1)-O(1)-C(1)	111.3(2)	111.22(15)	111.49(15)

Table S2. Selected bond lengths and bond angles for the complexes 1-3

Table S3. Selected bond	lengths and bond	l angles for the	ligands, HL2 & HL3
-------------------------	------------------	------------------	--------------------

Bond length Å / Bond angles °	HL2	HL3
N(1)-N(2)	1.383(9)	1.384(2)
N(2)-C(8)/ N(1)-C(8)	1.30(1)	1.287(2)
0(1)-C(1)	1.22(1)	1.231(2)
C(1)-N(2)/C(1)-N(2)	1.37(1)	1.349(2)
0(2)-C(20)	-	1.399(3)
C(5)-Br(1)	1.913(8)	-
∠N-N-C-Otorsion	-2.57	0.90

Table S4 Hydrogen Bonds for HL2								
D	Н	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°		
N3	H3	021	0.86	2.04	2.805(8)	147.3		
C3	H3A	022	0.93	2.66	3.285(10)	125.3		
C17	H17	021	0.93	2.72	3.348(11)	125.2		
N6	H6A	013	0.86	2.10	2.866(8)	148.8		

¹-1/2+X,3/2-Y,+Z; ²-1/2+X,1/2-Y,+Z; ³1/2+X,1/2-Y,+Z

Table S5 Hydrogen Bonds for HL3								
D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°		
N3	H3	03	0.87(2)	2.07(2)	2.924(2)	165.1(18)		
03	H3B	N1	0.81(2)	2.31(3)	2.9467(19)	135(2)		
03	H3C	011	0.89(2)	1.87(2)	2.7578(17)	175(2)		

¹1-X,1-Y,-Z

Table S6 Hydrogen Bonds for complexes 1-3							
	D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/°						
1	N3	H3	Cl1	0.860	2.440	3.223(4)	151.7
2	N3	H3	Cl1	0.72(3)	2.52(3)	3.213(3)	163.41
3	N3	H3	Cl1	0.860	2.4223	3.203(2)	151.2

Figure S1.:¹H NMR spectrum of HL1 inCDCl₃ (400 MHz, 293 K).

10.01 (1H, s, N-H3_{carbazole}), 9.32 (1H, s, N-H4A_{hydrazide}), 7.83-7.06 (9H, m, H3A, H4, H5, H6, H7, H14, H15, H16, H17, CH_{carbazole+hydrazide}), 2.99 (2H, s, H9, H'9, CH_{cyclohexane}), 2.64 (2H, s, H10, H'10, CH_{cyclohexane}), 2.10 (2H, s, H11, H'11, CH_{cyclohexane}).

Figure S2. ¹H NMR spectrum of [Ru(L1)Cl(η^{6} -benzene)], **complex 1** inCDCl₃ (400 MHz, 293 K).

10.87 (1H, s,N-H3_{carbazole}), 8.16 (2H, d,³J = 8.0 Hz, H3A, H7, CH_{hydrazide}), 7.63 (H, d, ³J = 8.0 Hz,H17, CH_{carbazole}), 7.51 (H, d, ³J = 8.0 Hz,H14, CH_{carbazole}), 7.35 (3H, m, H4, H5, H6,CH_{hydrazide}), 7.19 (2H, dd, ³J = 8.0 Hz, H15, H16, CH_{carbazole}), 5.50 (6H, s, H20, H21, H22, H23, H24, H25, CH_{arene}), 3.18-3.05 (4H, m, H9, H'9, H10, H'10, CH_{cyclohexane}), 2.25 (H, s, H'11, CH_{cyclohexane}), 2.15 (H, s, H11, CH_{cyclohexane}).

Figure S3.¹H NMR spectrum of HL2 in DMSO-d₆(400 MHz, 293 K).

11.33 (1H, s, N-H3_{carbazole}), 10.95 (1H, s, N-H1_{hydrazide}), 7.87 (2H, d,³J = 8.0 Hz, H7, H3A, CH_{hydrazide}), 7.72 (2H, d, ³J = 8.0 Hz, H4, H6, CH_{hydrazide}), 7.51(1H, d, ³J = 8.0 Hz, H17, CH_{carbazole}), 7.43 (1H, d, ³J = 8.0 Hz, H14, CH_{carbazole}), 7.17 (1H, t, ³J = 8.0, 4.0 Hz, H16, CH_{carbazole}), 7.00 (1H, t, ³J = 8.0 Hz, H15, CH_{carbazole}), 2.81 (4H, d, ³J = 4 Hz, d, H9, H'9, H10, H'10, CH_{cyclohexane}), 1.99 (2H, t, ³J = 8.0, 4.0 Hz, H11, H'11, CH_{cyclohexane}).

Figure S4.¹H NMR spectrum of [Ru(L2)Cl(η^6 -benzene)], **complex 2** inCDCl₃ (400 MHz, 293 K). 10.83 (1H, s, N-H3_{carbazole}), 8.02 (H, d,³J = 8.0 Hz, H7, CH_{hydrazide}), 8.03-7.15 (7H, m, H3A, H4, H6, H14, H15, H16, H17,CH_{carbazole+hydrazide}), 5.50 (6H, s, H20, H21, H22, H23,H24, H25, CH_{arene}), 4.02-2.22 (6H, m, H9, H'9, H10, H'10, H11, H'11, CH_{cyclohexane}).

Figure S5.¹H NMR spectrum of HL3 in DMSO-d₆(400 MHz, 293 K).

11.36 (1H, s,N-H3_{carbazole}), 10.76 (1H, s, N-H2_{hydrazide}), 7.95 (2H, d, ³J = 8.0 Hz, H7, H3A, CH_{hydrazide}), 7.51 (H, d, ³J = 8.0 Hz, H6, CH_{hydrazide}), 7.44 (H, d, ³J = 8.0 Hz, H4, CH_{hydrazide}), 7.20-6.99 (4H, m, H14, H15, H16, H17, CH_{carbazole}), 3.82 (3H, s, OCH₃), 2.82 (4H, s, H9, H'9, H10, H'10, CH_{cyclohexane}), 1.99 (2H, t, ³J = 8.0, 4.0 Hz, H11, H'11, CH_{cyclohexane}).

Figure S6.¹H NMR spectrum of [Ru(L3)Cl(η^6 -benzene)], complex3 inCDCl₃ (400 MHz, 293

K).10.85 (1H, s, N-H3_{carbazole}), 8.09 (2H, d, ³J = 12.0 Hz, H7, H3A, CH_{hydrazide}), 7.60 (H, d, ³J = 8.0 Hz, H6, CH_{hydrazide}), 7.49 (H, d, ³J = 8.0 Hz, H4, CH_{hydrazide}), 7.31-7.12 (2H, m, H16, H17, CH_{carbazole}), 6.84 (2H, d, ³J = 8.0 Hz, H15, H18, CH_{carbazole}), 5.47 (6H, s, H21, H22, H23,H24, H25, H26, CH_{arene}), 3.82 (3H, s, OCH₃), 3.03-3.17 (4H, m, H10, H'10, H11, H'11, CH_{cyclohexane}), 2.22 (H, s, H'12, CH_{cyclohexane}), 2.12 (H, s, H12, CH_{cyclohexane}).

Figure S7.¹³C NMR spectrum of **HL1** in CDCl₃ (100 MHz, 293 K). 164.3(C1), 148.0(C8), 137.9(C2), 132.2(C19), 131.3(C18), 129.7(C3,C7), 128.9(C4,C6), 127.2(C5), 124.5(C13), 121.4(C16), 120.4(C15), 119.4(C14), 112.7(C17), 111.8(C12), 25.0(C9), 23.2(C10), 21.4(C11)

Figure S8.¹³C NMR spectrum of **complex1** in CDCl₃ (100 MHz, 293 K). 170.9(c1), 162.7(c8), 138.2(c2), 132.4(c19), 130.4(c18), 129.4(c3,c7), 128.8(c4,c6), 127.9(c5), 126.3(C13), 125.4(c15, c16), 120.1(c17), 119.8(c14), 111.8(c12), 84.5(c20,c21,c22,c23,c24,c25), 30.8(c9), 24.0(c10), 21.6(c11)

Figure S9.¹³C NMR spectrum of **HL2** in DMSO-d₆ (100 MHz, 293 K). 162.8(C1), 152.2(C8), 137.5(C2), 133.1(C5), 131.3(C19), 130.4(C18), 129.9(C3,C7), 126.1(C6,C4), 125.1(C13), 123.7(C16), 119.7(C15), 119.1(C14), 118.8(C17), 111.9(C12), 25.8(C9), 23.1(C10), 20.4 (C11)

Figure S10.¹³C NMR spectrum of **complex 2** in CDCl₃(100 MHz, 293 K). 172.2(C1), 163.1(C8), 138.2(C2), 131.3(C5), 131.1(C19), 130.4(C18), 129.3(C6,C4), 126.3(C3,C7), 125.5(C13), 124.9(C15,C16) 120.2(C14), 119.9(C17), 112.0(C12), 84.5(C20,C21,C22,C23,C24,C25), 30.9(C9), 24.0(C10), 21.5(C11)

Figure S11.¹³C NMR spectrum of **HL3** in DMSO-d₆ (100 MHz, 293 K). 161.8(c1), 151.1(c8), 137.4(c2), 130.6(c5), 129.7(c19), 126.1(c18), 125.9(c3,c7), 123.6(c6,c4), 119.3(c13), 119.1(c15, c16), 118.8(c14), 113.5(c17), 111.9(c12), 55.3(c20), 25.7(c9), 23.2(c10), 20.4(c11)

Figure S12.¹³C NMR spectrum of **complex 3** in CDCl₃(100 MHz, 293 K). 173.1(C1), 163.7(C8), 138.1(C2), 130.5(C5), 129.5(C19), 126.4(C18), 125.3(C3,C7), 124.9 (C6,C4), 124.2(C13), 120.1(C15, C16),119.7(C14), 113.2(C17), 111.9(C12), 84.5(C20,C21,C22,C23,C24,C25), 55.3(C20), 30.7(C9), 24.0(C10), 21.5(C11)

Figure S13. Mass spectrum of **HL1**in (CH₃OH + CH₃CN) m/z: Calculated for C₁₉H₁₇N₃O: 303.14 [M]⁺; Observed: 304.1444 [M+H]⁺; 367.1914[M+Na+CH₃CN]⁺; 607.2813 [2M+H]⁺

Figure S14. Mass spectrum of **HL2**in (CH₃OH + CH₃CN) m/z: Calculated for C₁₉H₁₆BrN₃O: 381.05 [M]⁺; Observed: 382.05 [M+H]⁺. 404.04 [M+Na]⁺; 445.06 [M+Na+CH₃CN]⁺; 787.08 [2M+Na+2H]⁺

Figure S15. Mass spectrum of **HL3**in (CH₃OH + CH₃CN) m/z: Calculated for C₂₀H₁₉N₃O₂: 333.15 [M]⁺; Observed: 334.15 [M+H]⁺; 356.13[M+Na]⁺; 667.30 [2M+H]⁺; 689.28 [2M+Na]⁺.

Figure S16.Mass spectrum of **complex 1**in CH₃OH + CH₃CN m/z: Calculated for C₂₅H₂₂ClN₃ORu: 517.05 [M]⁺; Observed: 482.08 [M-Cl]⁺. 523.10 [M-Cl+CH₃CN]⁺; 999.13[2M-2Cl+CH₃OH+3H]⁺;

Figure S17.Mass spectrum of **complex 2**inCH₃OH + CH₃CN m/z: Calculated for C₂₅H₂₁BrClN₃ORu: 594.96 [M]⁺; Observed: 561.99 [M-Cl+2H]⁺. 603.02 [M-Cl+CH₃CN]⁺; 1156.95 [2M-2Cl+CH₃OH+4H]⁺.

Figure S18. Mass spectrum of **complex 3** inCH₃OH + CH₃CN m/z: Calculated for C₂₆H₂₄ClN₃O₂Ru: 547.06 [M]⁺; Observed: 512.09 [M-Cl]⁺. 553.12 [M-Cl+CH₃CN]⁺; 598.15 [M-Cl+CH₃CN+4H]⁺; 1059.15 [2M-2Cl+CH₃OH+3H].

Figure S19. UV-vis spectrum of complexes **1-3** in 1% DMSO in phosphate buffer at 293K over various time intervals. [complex] = 5 μ M. Arrows indicate the steady decrease in absorption intensity

In vitro cancer cell growth inhibition by MTT assay

Figure S20. Effect of concentrations of the complexes 1-3 and cisplatin on % cell viability

Figure S21. Cytotoxic effects of the complexes **1-3** assessed by MTT assay after 48 h of incubation period

References

- A. Kent and D.M. Neil, *J. Chem. Soc.*, 1938, 8.
 M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, S. Ittel and W. Nickerson, *Inorg. Synth.*, 1982, 74-82.
 O. D. Rigaku, 2018, *CrysAlisProversion* 1.171.39.46.
 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**,339-341.
 G. M. Sheldrick, *ActaCryst.* A2008, **A64**, 112-122.