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Experimental sections

Synthesis of graphite oxide (GtO). GtO was prepared by a typical modified Hummers’ method, and 

the detailed processes were seen in our previous works.

Synthesis of FRGO. In detail, a fully dried GtO paper got closed to the epitaxial flame of an alcohol 

lamp by using a steel tweezer. Once the color of the brown paper turned into black, the reaction was 

terminated. The whole process only took 1 second. The obtained black products are FRGO (Seen in 

Video 1).  

Synthesis of MFRGO. The obtained FRGO was placed into an 800 W household microwave oven. 

After < 3-seconds microwave pulse, the MFRGO was obtained (Seen in Video 2). 

Physical measurements. Microstructure was observed by a FEI NanoSEM 450 field-emission 

scanning electron microscopy (FE-SEM) at a voltage of 10 kV and a TEM-2100F transmission 

electron microscopy (TEM) at a voltage of 200 kV. And energy dispersive X-ray (EDX) analysis was 

performed on the FEI NanoSEM 450. A Thermo Scientific K-Alpha X-ray photoelectron spectroscopy 
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(XPS) was employed to investigate the content of the obtained materials. X-ray diffraction (XRD) 

technology (PANalytical X’Pert powder) was used to identify the change of materials. Raman spectra 

were collected by a LabRAM HR Evolution spectrophotometer. A Quadrasorb 2MP analyzer was 

employed to investigate the pore distribution and specific surface area of the obtained materials.

Electrochemical measurements. A CHI760E electrochemical workstation (Shanghai Chenhua, 

China) was employed to perform all electrochemical measurements. The used electrolyte solution is 

2M KOH aqueous solution. Pt sheet (2×2 cm) as counter electrode, saturated calomel electrode (SCE) 

as reference electrode, and working electrode fabricated by directly pressing ~ 2 mg MFRGO into two 

Ni foams with 1×2 cm at 8 Mpa for 10 min constituted the typical three-electrode system. The cyclic 

voltammetry (CV) process was carried out at the scan rate from 10 to 1000 mV s-1 in the voltage 

window of -1-0 V, respectively. Galvanostatic charge/discharge (GCD) process was performed within 

the potential window from -1 to 0 V at various current densities. Electrochemical resistance 

spectroscopy (EIS) was collected in the frequency range of 0.01-106 Hz.

Figure S1. Flash and flame produced in the microwave process.



Figure S2. TEM images of MFRGO. 
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Figure S3. A) XRD pattern of graphite. B) Raman spectrum of graphite. C) C1s XPS spectrum of 

graphite. D) XPS survey spectrum of graphite. 



Table S1. Analysis of components.

C (at.%) O (at.%)

MFRGO 96.88 3.12

graphite 98.37 1.63
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Figure S4. A) CV curves of MFRGO at various scan rates. B) GCD curves of MFRGO at different 

current densities. 
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Figure S5. A comparative data of 100 tests between the direct microwave and flame-assisted 

microwave methods. In terms of the direct microwave method, the microwave process is the same as 



the literature. The GO was directly handled by the microwave irradiation for 1 min.

Table S2. Comparison of typical as-reported reduction methods.

Method Conditions C/O atom Reference

Hydrazine, 80 ℃, 12 h 10.2 Carbon, 2011, 49, 3019–3023

55% hydrohalic acids, 100 ℃, 1 h 12 Carbon, 2010, 48, 4466–4474

Sodium borohydride, 48 h 5.3 Adv. Funct. Mater., 19, 2009, 1987–

1992

Benzyl alcohol, 100 ℃, 5 d 30 J. Mater. Chem., 2011, 21, 3443–

3447

Lycium barbarum, 95 ℃, 30 min 6.5 J. Solid State Chem., 2017, 246,  

351–356

Alanine, 85 ℃, 24 h Mater. Sci. Eng. C, 2017, 72, 1-6.

Chemical reduction

Chrysanthemum, 95 ℃, 24 h 4.96 Mater. Chem. Phys., 2016, 183, 76-

82.

Vitamin C, 95 ℃, 2 h J. Mater. Chem. A, 2018,6, 7777-

7785

NMP, 180 ℃, 1 h 9.7 J. Mater. Chem., 2011, 21, 3371–

3377

Water, 200 ℃, 16 h 21 Carbon, 2008, 46, 1994–1998

Water, 180 ℃, 16 h 5.6 Chem. Mater., 2009, 21, 2950–2956

Methanol, vanadium chloride, 180 

℃, 6 h

11.9 Mater. Chem. Phys., 2019, 229, 319-

329.

Hydrothermal/

solvothermal 

reduction

Water, 180 ℃, 24 h Phys. Lett. A, 2019, 380(38), 3128-

3132

1000 ℃, 1 h 18.3 Adv. Funct. Mater., 2015, 25, 4664–

4672

Melamine, 800 ℃, 1 h 11.8 ACS Nano, 2011, 5, 4350–4358
Thermal annealing

1050 ℃, 30 s 13.2 J. Mater. Chem., 2011, 21, 5392–



5397

H2, 800 ℃, 12 h 25.3 Adv. Funct. Mater., 2010, 20, 1930–

1936

800 ℃, 2 h Mater. Chem. Phys., 2018, 204, 1-7.

1700 ℃, 2 h Nanomaterials, 2017, 7, 428-1

1225 ℃, 250 ps Carbon, 2016, 100, 90-98

Camera flash, <1 s 4.23 J. Am. Chem. Soc., 2009, 131, 11027–

11032

H2, 500 W UV lamp, 2 h 4.5 ACS Appl. Mater. Interfaces, 2010, 2, 

3461–3466 

Nd:YAG laser (355 nm), 10 ns 16.9 Chem. Asian J., 2012, 7, 301–304

Camera flash 15.6 ACS Nano, 2012, 6, 7867–7878

IR irradiation, N2, 26 s 8.3 Nanoscale, 2013, 5, 9040-9048

Camera flash light, 1 h Front. Chem. Sci. Eng., 2018, 12(3), 

376-382

UV irradiation, 5 h 4.8 New J. Chem., 2019, 43, 681-688

Photothermal 

reduction

IPL irradiation, 500 μs Applied Surface Science, 2018, 459, 

732-740

700 W, 1 min 2.75 Carbon, 2010, 48, 2106–2122

Pre-reduction at 300 ℃ for 1 h, 

1000 W, < 2 s

24 Science, 2016, 353, 1413–1415

Catalysis, 1000 W, < 5 s 19.4 Angew. Chem. Int. Ed., 2017, 56, 

15677–15682

Microwave 

induction

Intermittent Microwave, 400 s 19.0 J. Colloid. Interf. Sci., 2020, 565,  

288–294

Naked flame, < 5 s 6.1 J. Power Sources, 2013, 222, 52–58

Naked flame, several seconds 7.9 J. Mater. Chem. A, 2014, 2, 5730–

5737
Flame induction

Freeze drying, naked flame, < 1 s 11.3 J. Alloy. Compd., 2019, 782, 17–27



Naked flame, <1 s 10.4 J. Mater. Chem. C,2015, 3,2788-2791

Hydrogen plasma, 150 ℃ 7.0 J. Phys. Chem. Lett., 2012, 3,  

772−777

H2/NH3 plasma (500 W), 1 h 5.2 J. Mater. Chem. A, 2013, 1, 4431–

4435

Ar plasma, 15 min Light-Sci. Appl., 2016, 5, 16130-1

Plasma

H2 plasma, 3 min Chem. Commun., 2016, 52, 10988-

10991

Flame+microwave

Naked flame induction, <1 s; 

microwave (800 W) irradiation, 

< 3 s

31.1 This work


