Electronic Supplementary Information (ESI)

Anion-Mediated Encapsulation-Induced Emission Enhancement of an Ir^{III} Complex within a Resorcin[4]arene Hexameric Capsule

Shinnosuke Horiuchi,*^{a,,b} Chiharu Matsuo,^a Eri Sakuda,^{a,b} Yasuhiro Arikawa,^a Guido H. Clever,^b and Keisuke Umakoshi*^a

E-mail: shoriuchi@nagasaki-u.ac.jp, kumks@nagasaki-u.ac.jp

^a Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521 Japan

^b Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany

Contents

- · Materials and Instrumentations
- · General procedure of encapsulation experiments
- NMR spectra (Figures S1–S14, Table S1)
 - ¹H and DOSY NMR spectra of [**3**]Br in the presence of **1a** (Figures S1–S2)
 - ¹H NMR spectra of the guest exchange reaction of **2a**⊃[**3**]Br with [TBA]Br (Figure S3)
 - ¹H NMR spectra of [**3**]NO₂ in the presence of **1a** (Figure S4)
 - ¹H NMR spectra of [3]I in the presence of 1a (Figure S5)
 - ¹H NMR spectra of [**3**]NO₃ in the presence of **1a** (Figure S6)
 - ¹H and ¹⁹F NMR spectra of [**3**]BF₄ in the presence of **1a** (Figures S7–S8)
 - ¹H NMR spectra of [**3**]ClO₄ in the presence of **1a** (Figure S9)
 - ¹H and ¹⁹F NMR spectra of [**3**]PF₆ in the presence of **1a** (Figures S10–S11)
 - ¹H and ¹⁹F NMR spectra of [**3**]OTf in the presence of **1a** (Figures S12–S13)
 - ¹H NMR spectra of [3]X (X = Cl, Br, I, NO₂, NO₃, OTf, BF₄, ClO₄, and PF₆) (Figure S14, Table S1)
- ESI-MS and MS-MS spectra of $[3]^+$ in the presence of resorcin[4] arene 1b (R = Me) (Figures S15–S16)
- Photophysical data (Figures S17–S24, Tables S2–S9)
 - Photophysical data of [**3**]X (X = Cl, Br, NO₂, I, NO₃, BF₄, ClO₄, PF₆ and OTf) (Figure S17, Table S2)
 - Photophysical data of [3]Br in the presence of 1a (Figures S18–S19, Table S3)
 - Photophysical data of [3]NO₂ in the presence of 1a (Figures S20–S21, Table S4)
 - Photophysical data of [3]I in the presence of 1a (Figures S22–S23, Table S5)
 - Photophysical data of [3]NO₃ in the presence of 1a (Figures S24–S25, Table S6)
 - Photophysical data of [3]BF₄ in the presence of 1a (Figures S26–S27, Table S7)
 - Photophysical data of [3]ClO₄ in the presence of 1a (Figures S28–S29, Table S8)
 - Photophysical data of [3]PF₆ in the presence of **1a** (Figures S30–S31, Table S9)
- Modeling structure of $2 \supset [3]^+$ (Figure S32)

Materials and Instrumentations

The ¹H, ¹⁹F and DOSY NMR spectra were obtained at 300 MHz with a Varian Gemini 300 and 500 MHz (470 MHz for ¹⁹F) with Varian NMR System 500PS spectrometer. Electrospray ionization (ESI) and Tandem mass spectrometry were performed on Bruker ESI timsTOF mass spectrometer. UV/Vis spectra were recorded on a Jasco V-560 spectrophotometer. Corrected emission spectra were obtained by using a Jasco FP-6500 spectrofluorometer. Lifetime measurements were conducted by using a streak camera (Hamamatsu C4334) as a detector and the third-harmonic generation of an Nd:YAG Laser (Continuum Minilite). Emission quantum yields were determined by using a Hamamatsu Photonic Absolute PL Quantum Yield Measurement System C9920-02. Solvents and reagents were used as purchased. Resorcin[4]arene **1a** (R = C₁₁H₂₃) and **1b** (R = Me) were prepared according to an established method and purified by recrystallization from acetone/water mixture. The chloride salt of Ir complex [Ir(ppy)₂(bpy)]Cl was synthesized according to the literature. The salts of polyatomic ions [Ir(ppy)₂(bpy)]X (X = NO₂, NO₃, BF₄, ClO₄, PF₆, and OTf) and the other halides [Ir(ppy)₂(bpy)]X (X = Br and I) were obtained by anion exchange reactions using [Ir(ppy)₂(bpy)]Cl with Ag salts in CH₃CN and [Ir(ppy)₂(bpy)]PF₆ with potassium salts (KBr and KI) in CHCl₃, respectively. All Ir complex salts were purified by recrystallization before using.

General procedure of encapsulation experiments

To a wet chloroform solution (0.5 mL) of resorcin[4]arene **1a** (6.6 μ mol) was added [Ir(ppy)₂(bpy)]X ([**3**]X, 1.0 μ mol). After the mixture was heated at 50 °C for 1 h in dark, the formation of host–guest complex **2a** \supset [**3**]X was followed by NMR spectroscopy.

¹H and DOSY NMR spectra of [3]Br in the presence of 1a

Figure S1. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]Br, b) the mixture of [**3**]Br and resorcin[4]arene **1a** before heating, c) the mixture after heating at 50 °C for 1 h, and d) hexameric capsule **2a**. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were considerably shifted to up-field region ($\Delta \lambda = -1.1$ ppm) probably because the Br anion was captured by the capsule. After heating the mixture, no free [**3**]Br was observed, indicating that the ion-pair was stabilized significantly within the capsule.

¹H NMR spectra of the guest exchange reaction of 2a₃[3]Br with [TBA]Br

To a CDCl₃ solution containing the encapsulated $[Ir(ppy)_2(bpy)]Br$ ([3]Br, 1.0 µmol) within resorcin[4]arene 1a (7.0 µmol) (2a \supset [3]Br) was added [TBA]Br (3.0 µmol). After the mixture was heated at 50 °C for 1 h, the guest exchange and the formation of host–guest complex 2a \supset [TBA]Br were confirmed by ¹H NMR spectroscopy.

Figure S3. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) host–guest complex $2a \supseteq [3]Br$ and b) the mixture after the addition of 3 equiv. of tetrabutylammonium bromide ([TBA]Br). The addition of TBA salt into a solution of inclusion complex $2a \supseteq [3]Br$ afforded a mixture of host–guest complex $2a \supseteq [TBA]Br$, free Ir complex salt [3]Br, and free TBA salt, indicating that guest exchange reaction proceeded to release the Ir complex cation [3]⁺ from the capsule.

¹H NMR spectra of [3]NO₂ in the presence of 1a

Figure S4. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]NO₂, b) the mixture of [**3**]NO₂ and resorcin[4]arene **1a** after mixing for 5 min, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were considerably shifted to up-field region ($\Delta \lambda = -0.7$ ppm) probably because the NO₂ anion was captured by the capsule. The encapsulation of [**3**]NO₂ proceeded smoothly at room temperature. After heating the mixture, free [**3**]NO₂ was not observed, indicating that the ion-pair was stabilized significantly within the capsule.

¹H NMR spectra of [3]I in the presence of 1a

Figure S5. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]I, b) the mixture of [**3**]I and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were slightly shifted to up-field region ($\Delta \lambda = -0.3$ ppm) probably because of the weak hydrogen-bonding ability of iodide ion. After heating the mixture, both free and encapsulated [**3**]⁺ were observed. These results indicate that the ion-pair is not stabilized enough because of the size of the ion-pair comparable to the capacity of the cavity.

¹H NMR spectra of [3]NO₃ in the presence of 1a

Figure S6. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]NO₃, b) the mixture of [**3**]NO₃ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were slightly shifted to up-field region ($\Delta \lambda = -0.6$ ppm) probably NO₃ anion was captured by the capsule. The encapsulation of [**3**]NO₃ proceeded smoothly at room temperature. After heating the mixture, both free and encapsulated [**3**]⁺ were observed. These results indicate that the ion-pair is not stabilized enough because of the size of the ion-pair comparable to the capacity of the cavity.

¹H and ¹⁹F NMR spectra of [3]BF₄ in the presence of 1a

Figure S7. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]BF₄, b) the mixture of [**3**]BF₄ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were slightly shifted to up-field region ($\Delta \lambda = -0.2$ ppm) probably because of the weak hydrogen-bonding ability of BF₄⁻ ion. After heating the mixture, both free and encapsulated [**3**]⁺ were observed. These results indicate that the ion-pair is not stabilized enough because of the size of the ion-pair comparable to the capacity of the cavity.

Figure S8. ¹⁹F NMR spectra (470 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]BF₄, b) the mixture of [**3**]BF₄ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. New peak at -142 ppm appeared after heating the sample, which can be assigned to trapped BF₄ anion within the capsule.

¹H NMR spectra of [3]ClO₄ in the presence of 1a

Figure S9. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]ClO₄, b) the mixture of [**3**]ClO₄ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were slightly shifted to up-field region ($\Delta \lambda = -0.1$ ppm) probably because of the weak hydrogen-bonding ability of ClO₄⁻ ion. After heating the mixture, free [**3**]⁺ was predominantly observed. These results indicate that the formation of the ion-pair is thermodynamically disfavored within the capsule.

¹H and ¹⁹F NMR spectra of [3]PF₆ in the presence of 1a

Figure S10. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]PF₆, b) the mixture of [**3**]PF₆ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were not shifted probably because of the negligible hydrogen-bonding ability of PF_6^- ion. After heating the mixture, only free [**3**]⁺ was observed. These results indicate that the ion-pair is not stabilized enough for PF_6 anion because the size of the ion-pair is larger than the capacity of the cavity.

Figure S11. ¹⁹F NMR spectra (470 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]PF₆, b) the mixture of [**3**]PF₆ and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. No new peak was observed after heating the sample, suggesting that the PF₆ anion was not trapped within the capsule.

¹H and ¹⁹F NMR spectra of [3]OTf in the presence of 1a

Figure S12. ¹H NMR spectra (500 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]OTf, b) the mixture of [**3**]OTf and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. The H3 and H3' protons in the bpy ligand of [**3**]⁺ were slightly shifted to up-field region ($\Delta \lambda = -0.2$ ppm) probably because of the weak hydrogen-bonding ability of OTf⁻ ion. After heating the mixture, free [**3**]⁺ was predominantly observed. These results indicate that the formation of the ion-pair is thermodynamically disfavored within the capsule.

Figure S13. ¹⁹F NMR spectra (470 MHz, CDCl₃, r.t.) of a) Ir complex salt [**3**]OTf, b) the mixture of [**3**]OTf and resorcin[4]arene **1a** before heating, and c) the mixture after heating at 50 °C for 1 h. No new peak was observed after heating the sample, suggesting that the OTf anion was not trapped within the capsule.

¹H NMR spectra of [3]X (X = Cl, Br, I, NO₂, NO₃, OTf, BF₄, ClO₄, and PF₆)

The counter anion-dependent down-field shifts of H3 and H3' protons on the bpy ligand in $[3]^+$ indicate that the extent of down-field shifts is correlated with the hydrogen-bonding abilities of counter anions. It is noted that monoatomic anions (X = Cl⁻, Br⁻, and I⁻) showed larger down-field shifts, compared to polyatomic anions, probably because of smaller entropy loss upon the formation of chelating form [3]X.

Counter Anion	Chemical shift (ppm)	H-bond acceptor parameters $(\beta)^{[a]}$	Counter Anion	Chemical shift (ppm)	H-bond acceptor parameters $(\beta)^{[a]}$
Cl ⁻	9.75	12.1 ± 0.3	NO_2^-	9.20	_
Br^{-}	9.65	10.6 ± 0.2	NO_3^-	9.14	10.7 ± 0.5
I-	9.36	9.1 ± 0.1	OTf⁻	8.98	9.4 ± 0.4
			$\mathrm{BF_4}^-$	8.90	_
			ClO_4^-	8.87	8.3 ± 0.4
			PF_6^-	8.68	7.0 ± 0.3

[a] ref. 19 in the main text.

Figure S15. ESI-MS spectra of a mixture of Ir complex salt and resorcin[4]arene 1b (R = Me) in CHCl₃/acetone (2:1). The template effect of the complex cation effectively stabilizes self-assembly of hydrogen-bonded resorcin[4]arene capsules even in a gas phase. Fragmentation of $[1b_6 \cdot 3]^+$ under the measurement condition afford host–guest complex $[1b_3 \cdot 3]^+$ as the most intense peak.

Figure S16. ESI tandem mass spectrum of $[1b_4 \cdot 3]^+$ (m/z : 2835) with the collision energy at a) 1 eV, b) 5 eV, and c) 10 eV. Higher collision energy promotes consecutive monomer losses from the parent ion.

Photophysical data of [3]X (X = Cl, Br, NO₂, I, NO₃, BF₄, ClO₄, PF₆, and OTf)

All measurements were performed in 10 μ M CHCl₃ solution of the analytes in the absence and presence of various amount of resorcin[4]arene **1a** at room temperature under degassed conditions through N₂ bubbling for 30 min. In the latter case (in the presence of **1a**), the sample solutions were heated at 50 °C for 5 min and cooled to room temperature prior to photophysical measurement. Emission decay curves of the Ir complex salts and the host–guest complexes were analysed by a single exponential decay ($I(t) = A_1 \exp(-t/\tau)$) and a bi-exponential decay ($I(t) = A_1 \exp(-t/\tau)$) and a bi-exponential decay ($I(t) = A_1 \exp(-t/\tau)$) was estimated by the equation ($\tau_{ave} = A_1 \tau_1^2 + A_2 \tau_2^2 / A_1 \tau_1 + A_2 \tau_2$). The radiative rate constants (k_{rr}) and nonradiative rate constants (k_{nr}) were estimated using an equation: $\Phi = k_r / (k_r + k_{nr}) = k_r \tau$.

Figure S17. a) Normalized emission spectra (10 μ M, CHCl₃, r.t.) of the Ir complex salts and b) enlarged spectra around the peak top ($\lambda_{ex} = 400$ nm). All emission spectra almost overlap, indicating that the emission wavelength of the Ir complex cation was independent on their counter anions.

Complex	$\lambda_{\rm em}$ [nm]	$arPhi[\%]^{[a]}$	$\tau [\mathrm{ns}]^{[b]}$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
[3]Cl	609	20	420	4.8	1.9
[3]Br	608	23	430	5.3	1.8
[3]NO ₂	607	15	360	4.5	2.1
[3]I	605	14	360	3.9	2.4
[3]NO ₃	606	22	360	6.1	2.2
[3]BF ₄	605	23	440	5.3	1.8
[3]ClO ₄	605	26	400	6.5	1.9
[3] PF ₆	604	26	410	6.3	1.8
[3]OTf	604	20	440	4.5	1.8

Table S2. Photophysical data (10 μ M, CHCl₃, r.t.) of [3]X (X = Cl, Br, NO₂, I, NO₃, BF₄, ClO₄, PF₆, and OTf).

[a] All measurements were performed in CHCl₃ at room temperature under degassed conditions. [b] analysed by a single exponential decay.

Photophysical data of [3]Br in the presence of 1a

Figure S18. a) UV-vis absorption and b) normalized emission spectra of the [3]Br (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [3]⁺ did not change significantly after encapsulation, meanwhile the emission spectra of [3]⁺ showed blue-shift upon addition of **1a**.

[1a] [µM]	$\lambda_{\rm em} [{ m nm}]$	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A_2	<i>t</i> ₂ [ns]	$\tau_{\rm ave} [ns]$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	608	23	0.20	430 ^[a]				5.3	1.8
10	603	23	0.79	350	0.21	1030	650	3.5	1.2
30	599	25	0.70	470	0.30	1160	820	3.0	0.91
60	593	28	0.63	500	0.37	1140	870	3.2	0.83
120	585	32	0.62	670	0.38	1240	970	3.2	0.70
300	580	34	0.59	650	0.41	1220	970	3.5	0.68

Table S3. Photophysical data (10 µM for [3]Br, CHCl₃, r.t.) with various amounts of 1a.

Figure S19. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]Br) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]NO2 in the presence of 1a

Figure S20. a) UV-vis absorption and b) normalized emission spectra of the [**3**]NO₂ (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [**3**]⁺ did not change significantly after encapsulation, meanwhile the emission spectra of [**3**]⁺ showed blue-shift upon addition of **1a**.

[1a] [µM]	λ _{em} [nm]	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A ₂	<i>t</i> ₂ [ns]	Tave [ns]	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	607	15	0.18	360 ^[a]				4.5	2.1
10	604	10	0.85	390	0.15	870	520	1.9	1.7
30	596	12	0.72	400	0.28	890	630	1.9	1.4
60	583	13	0.54	330	0.60	960	780	1.7	1.1
120	577	13	0.36	450	0.64	1030	910	1.4	0.95
300	576	13	0.38	510	0.62	1070	940	1.4	0.92

Table S4. Photophysical data (10 µM for [3]NO₂, CHCl₃, r.t.) with various amounts of 1a.

Figure S21. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]NO₂) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]I in the presence of 1a

Figure S22. a) UV-vis absorption and b) normalized emission spectra of the [3]I (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [3]⁺ did not change significantly after encapsulation, meanwhile the emission spectra of [3]⁺ showed blue-shift upon addition of **1a**.

[1a] [µM]	λ _{em} [nm]	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A_2	τ_2 [ns]	$ au_{\mathrm{ave}} [\mathrm{ns}]$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	605	14	0.18	360 ^[a]				3.9	2.4
10	602	14	0.80	380	0.20	1110	690	2.0	1.2
30	591	15	0.67	490	0.33	1150	850	1.8	1.0
60	584	18	0.55	540	0.45	1090	880	2.0	0.93
120	581	18	0.59	630	0.41	1170	930	1.9	0.88
300	579	19	0.56	680	0.44	1230	1000	1.9	0.81

Table S5. Photophysical data (10 µM for [3]I, CHCl₃, r.t.) with various amounts of 1a.

Figure S23. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]I) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]NO3 in the presence of 1a

Figure S24. a) UV-vis absorption and b) normalized emission spectra-of the [**3**]NO₃ (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [**3**]⁺ did not change significantly after encapsulation, meanwhile the emission spectra of [**3**]⁺ showed blue-shift upon addition of **1a**.

[1a] [µM]	λ _{em} [nm]	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A_2	<i>t</i> ₂ [ns]	$ au_{\rm ave} [{\rm ns}]$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	606	22	0.20	360 ^[a]				6.1	2.2
10	603	22	0.82	310	0.18	960	570	3.8	1.4
30	599	22	0.66	340	0.34	980	720	3.0	1.1
60	596	23	0.55	420	0.45	1040	840	2.7	0.92
120	586	24	0.46	400	0.54	1050	890	2.6	0.85
300	578	24	0.50	650	0.50	1170	980	2.4	0.77

Table S6. Photophysical data of [3]NO₃ in the presence of 1a.

Figure S25. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]NO₃) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]BF4 in the presence of 1a

Figure S26. UV-vis absorption and b) normalized emission spectra of the [**3**]BF₄ (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [**3**]⁺ did not change significantly after encapsulation, meanwhile the emission spectra of [**3**]⁺ showed blue-shift upon addition of **1a**.

[1a] [µM]	λ _{em} [nm]	\varPhi [%]	A_1	<i>τ</i> ₁ [ns]	A_2	τ_2 [ns]	$ au_{\mathrm{ave}} [\mathrm{ns}]$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	605	23	0.23	440 ^[a]				5.3	1.8
10	605	23	0.90	370	0.10	970	510	4.5	1.5
30	602	23	0.73	340	0.27	1050	730	3.2	1.1
60	598	27	0.74	470	0.26	1090	750	3.6	0.97
120	596	29	0.06	460	0.40	1020	790	3.6	0.90
300	591	32	0.06	570	0.40	1120	880	3.6	0.77

Table S7. Photophysical data (10 µM for [3]BF4, CHCl3, r.t.) with various amounts of 1a.

Figure S27. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]BF₄) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]ClO₄ in the presence of 1a

Figure S28. a) UV-vis absorption and b) normalized emission spectra of the [3]ClO₄ (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). The absorption spectra of [3]⁺ did not change significantly after addition of **1a**, and the emission spectra of [3]⁺ showed very small blue-shift.

[1a] [µM]	λ _{em} [nm]	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A_2	<i>t</i> ₂ [ns]	$ au_{ m ave} [m ns]$	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	605	26	0.17	400 ^[a]				6.5	1.9
10	605	26	0.94	330	0.06	1150	480	5.4	1.5
30	604	26	0.95	420	0.05	1350	560	4.7	1.3
60	603	26	0.90	410	0.10	1260	630	4.1	1.2
120	602	27	0.85	470	0.15	1230	710	3.8	1.0
300	601	28	0.83	490	0.17	1300	780	3.6	0.92

Table S8. Photophysical data (10 µM for [3]ClO₄, CHCl₃, r.t.) with various amounts of 1a.

Figure S29. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]ClO₄) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Photophysical data of [3]PF6 in the presence of 1a

Figure S30. a) UV-vis absorption and b) normalized emission spectra of the [**3**]PF₆ (10 μ M, CHCl₃, r.t.) in the presence of **1a** ($\lambda_{ex} = 400$ nm). Both the absorption and emission spectra of [**3**]⁺ did not change significantly upon addition of **1a**.

[1a] [µM]	λ _{em} [nm]	$\varPhi[\%]$	A_1	<i>τ</i> ₁ [ns]	A_2	<i>τ</i> ₂ [ns]	tave [ns]	$k_{\rm r} [imes 10^5 { m s}^{-1}]$	$k_{\rm nr} [imes 10^6 { m s}^{-1}]$
0	604	26	0.22	410 ^[a]				6.3	1.8
10	604	26	0.98	370	0.98	1210	420	6.2	1.8
30	604	26	0.90	420	0.90	1160	590	4.4	1.2
60	604	26	0.92	460	0.92	1180	590	4.4	1.2
120	603	27	0.89	450	0.89	1170	620	4.4	1.2
300	603	27	0.89	440	0.89	1170	620	4.4	1.2

Table S9. Photophysical data (10 µM for [3]PF₆, CHCl₃, r.t.) with various amounts of 1a.

Figure S31. Photographic images of the CHCl₃ solutions (10 μ M for [**3**]PF₆) with various amounts of **1a** under photoirradiation ($\lambda_{ex} = 365$ nm).

Modeling structure of $2 \supset [3]^+$

The modeling structure was made up on the basis of their individual X-ray structures. The volume of the residual inner spaces in $2 \supset [3]^+$ were estimated by the VOIDOO calculations. The alkyl chains of 2 were omitted in the model for clarity.

Figure S32. A modeling structure of $2 \supset [3]^+$. H atoms and a counter anion were omitted for clarity. Hexameric capsule 2 is depicted by thick sticks, and Ir(III) complex cation $[3]^+$ is depicted by space-filling model: (left) front view, (right) back view. The inner spaces are shown with a) blue spheres and b) spheres with the same colors as the neighboring atoms. These modeling studies clearly show that the inner spaces are contacting with hydrophilic groups in the capsule framework.