Supporting Information

Oxidation Reactions of a Versatile, Two-Coordinate, Acyclic Iminosiloxysilylene

Dominik Reiter, Philipp Frisch, Daniel Wendel, Fabian M. Hörmann, and Shigeyoshi Inoue*

Table of Contents

1. Experimental Section	S2
1.1 General Methods and Instrumentation	S2
1.2 Synthesis of Iminosiloxysilepin 2	S3
1.3 Synthesis of (IDippN)('Bu ₃ SiO)Si(P ₄) (3)	S6
1.4 Synthesis of (IDippN)('Bu ₃ SiO)Si(H)(NH ₂) (4)	S9
1.5 Synthesis of (IDippN)('Bu ₃ SiO)Si(NTMSN) ₂ (5)	S12
1.6 Synthesis of (IDippN)('Bu ₃ SiO)Si=NSi'Bu ₂ Me (6)	S15
1.7 Synthesis of Azaoxasiletane (7)	S20
1.8 Synthesis of Oxatriazasilole (8)	
1.9 Synthesis of (IDippN)('Bu ₃ SiO)Si(O ₂ C=O) (9)	S26
1.10 Synthesis of <i>trans</i> -Cyclodisiloxane [(IDippN)('Bu ₃ SiO)Si=O] ₂ (10a)	
1.11 Synthesis of Silicon Diselenide [(IDippN)(^t Bu ₃ SiO)Si=Se] ₂ (10b)	
1.12 Synthesis of Silicon Ditelluride (IDippN)(^{<i>t</i>} Bu ₃ SiO)Si=Te (10c)	S36
1.13 Synthesis of <i>cis/trans</i> -Cyclodisiloxane [(IDippNO)('Bu ₃ SiO)Si=O] ₂ (11)	S38
1.14 Synthesis of (IDippN)('Bu ₃ SiO)Si(B(C ₆ F ₅) ₃) (12a)	S41
1.15 Synthesis of (IDippN)('Bu ₃ SiO)Si=O(IMe ₄) (13a)	S43
1.16 Synthesis and Reactivity of (IDippN)('Bu ₃ SiO)Si=O(I'Pr ₂ Me ₂) (13b)	S46
1.17 Synthesis of (IDippN)('Bu ₃ SiO)Si=O(DMAP) (13c)	
1.18 Synthesis of Aryl(boryloxy)silane 14	
2. X-ray Crystallographic Data	
3. References	S75

1. Experimental Section

1.1 General Methods and Instrumentation

All manipulations were carried out under exclusion of H₂O and O₂ under an atmosphere of argon 4.6 (≥99.996%; Westfalen AG) using standard Schlenk techniques or in a LABstar glovebox from MBraun Inertgas-Systeme GmbH with H₂O and O₂ levels below 0.5 ppm. The glassware used was heat dried under fine vacuum prior to use with Triboflon III grease (mixture of polytetrafluoroethylene (PTFE) and perfluoropolyether (PFPE)) from Freudenberg & Co. KG as sealant. All solvents were refluxed over sodium/benzophenone, freshly distilled under argon and deoxygenated before use. Deuterated benzene was obtained from Sigma-Aldrich Chemie GmbH, dried over Na/K alloy, flask-to-flask condensed, deoxygenated by three freeze-pump-thaw cycles and stored over 3 Å molecular sieves in the glovebox. All NMR samples were prepared under argon in J. Young PTFE valve NMR tubes. The NMR spectra were recorded on Bruker AV400US (¹H: 400.13 MHz, ¹¹B 128.38 MHz), Avance Neo 400 (¹H: 400.23 MHz, ¹³C: 100.65 MHz, ³¹P: 162.01 MHz), AV500 (¹H: 500.13 MHz) or AV500C (¹H: 500.36 MHz, ¹³C: 125.83 MHz, ¹⁹F: 470.77 MHz, ²⁹Si: 99.41 MHz, ³¹P: 202.57 MHz) spectrometers at ambient temperature (300 K). The ¹H, ¹³C{¹H} and ²⁹Si{¹H} NMR spectroscopic chemical shifts δ are reported in ppm relative to tetramethylsilane. ¹H and ¹³C{¹H} NMR spectra are calibrated against the residual proton and natural abundance carbon resonances of the deuterated solvent as internal standard $(C_6D_6: \delta(^1H) = 7.16 \text{ ppm and } \delta(^{13}C) = 128.1 \text{ ppm})$.^[S1] The following abbreviations are used to describe signal multiplicities: s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad and combinations thereof (e.g. dd = doublet of doublets). Some NMR spectra include $\delta(^{13}C) = 1.4 \text{ ppm}$ $\delta(^{1}H) = 0.29 \text{ ppm},$ (C_6D_6) : resonances for silicone grease and $\delta(^{29}\text{Si}) = -21.8 \text{ ppm})$ derived from *B. Braun Melsungen AG Sterican*® cannulas. Quantitative elemental analyses (EA) were carried out using a EURO EA (HEKAtech) instrument equipped with a CHNS combustion analyzer at the Laboratory for Microanalysis at the TUM Catalysis Research Center. Elemental analyses provided partially and reproducibly low carbon percentages (~1% deviation), presumably due to the formation of incombustible SiC compounds. Melting Points (m.p.) were determined in sealed glass capillaries under inert gas by a Büchi M-565 melting point apparatus. Mass spectra (Liquid Injection Field Desorption Ionization (LIFDI)-MS) were recorded on a *Waters Micromass LCT TOF* mass spectrometer equipped with a LIFDI-ion source (LIFDI-700) from Linden CMS GmbH. The samples were provided as filtered solution in toluene. Photochemical experiments were carried out using an Asahi Spectra Co., Ltd. MAX-302 Xenon

Light Source at $\lambda_{max} = 340$ nm. Unless otherwise stated, all commercially available reagents were purchased from *abcr GmbH* or *Sigma-Aldrich Chemie GmbH* and used without further purification. Carbon dioxide (CO₂) 5.0 (≥99.999%), dinitrogen monoxide (N₂O) 5.0 (≥99.999%) and oxygen (O_2) 5.0 (\geq 99.999%) were purchased from *Westfalen AG* and used as received. The compounds $(1)^{[S2]}$, (IDippN)(^{*t*}Bu₃SiO)Si: 1,3,4,5-tetramethylimidazolin-2-ylidene iminosiloxysilylene (IMe₄)^[S3] and 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (I^{*i*}Pr₂Me₂)^[S3] were prepared as described in the corresponding references. Azido(di-tert-butylmethyl)silane ('Bu2MeSiN3) was synthesized via a modified literature procedure (vide infra).^[S4] White phosphorus (P₄) was sublimed and stored at -35 °C in the dark in the glovebox.

1.2 Synthesis of Iminosiloxysilepin 2

C₃₉H₆₃N₃OSi₂ 646.12 g/mol

A J. Young PTFE valve NMR tube was charged with a solution of silvlene 1 (50.0 mg, 77.4 μ mol) in C₆D₆ (0.5 mL). After irradiation $(\lambda_{\text{max}} = 340 \text{ nm})$ at room temperature for 4 h, quantitative conversion was detected by ¹H NMR spectroscopy. Removal of the solvent *in vacuo* provided iminosiloxysilepin 2 as a pale yellow solid (50.0 mg, 77.4 μ mol, quantitative yield). Compound 2 is completely stable as a solid and in solution at ambient and elevated temperatures ($\leq 130 \text{ °C}$).

m.p.: 181-182 °C.

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.20–7.14 (m, 2H, *m*-/*p*-C_{Dipp}*H*, overlapping with solvent signal), 7.07 (dd, ${}^{4}J = 1.9$ Hz, ${}^{3}J = 7.3$ Hz, 1H, $m - C_{\text{Dipp}}H$), 6.83 (d, ${}^{3}J = 7.2$ Hz, 1H, $C_{silepin}H$), 6.70 (d, ${}^{3}J = 2.9$ Hz, 1H, NCH), 6.55 (d, ${}^{3}J = 13.2$ Hz, 1H, $C_{silepin}H$), 6.42 (dd, ${}^{3}J = 13.2 \text{ Hz}, {}^{3}J = 6.9 \text{ Hz}, 1\text{H}, C_{\text{silepin}}H$, 5.87 (d, ${}^{3}J = 2.9 \text{ Hz}, 1\text{H}, \text{NC}H$), 3.34 (sept, ${}^{3}J = 6.9 \text{ Hz}$, 1H, $CH(CH_3)_2$), 3.06 (sept, ${}^{3}J = 7.1$ Hz, 1H, $CH(CH_3)_2$), 2.97 (sept, ${}^{3}J = 6.7$ Hz, 1H, $CH(CH_3)_2$), 2.87 (sept, ${}^{3}J = 6.9$ Hz, 1H, C<u>H</u>(CH₃)₂), 1.40 (d, ${}^{3}J = 6.9$ Hz, 3H, CH(C<u>H</u>₃)₂), 1.37 (d, ${}^{3}J = 7.0$ Hz, 3H, CH(C<u>H</u>₃)₂), 1.36 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(C<u>H</u>₃)₂), 1.25 (d, ${}^{3}J = 6.9$ Hz, 3H, CH(C<u>H</u>₃)₂), 1.22 $(d, {}^{3}J = 6.9 \text{ Hz}, 3H, CH(CH_{3})_{2}), 1.20 (d, {}^{3}J = 6.9 \text{ Hz}, 3H, CH(CH_{3})_{2}), 1.13 (s, 27H, C(CH_{3})_{3}), 1.07$ $(d, {}^{3}J = 6.9 \text{ Hz}, 3\text{H}, \text{CH}(\text{C}H_{3})_{2}), 0.93 (d, {}^{3}J = 6.9 \text{ Hz}, 3\text{H}, \text{CH}(\text{C}H_{3})_{2}).$

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 157.6 (<u>C</u>), 151.1 (<u>C</u>), 148.0 (<u>C</u>), 147.5 (<u>C</u>), 133.9 (C), 133.8 (C), 132.1 (CH), 132.0 (C), 129.7 (CH), 128.6 (CH), 126.6 (CH), 124.3 (CH), 123.9 (<u>C</u>H), 117.1 (N<u>C</u>H), 110.5 (N<u>C</u>H), 36.1 (<u>C</u>H(CH₃)₂), 30.2 (C(<u>C</u>H₃)₃), 29.5 (<u>C</u>H(CH₃)₂), 28.9 (<u>C</u>H(CH₃)₂), 28.7 (<u>C</u>H(CH₃)₂), 25.5 (CH(<u>C</u>H₃)₂), 25.1 (CH(<u>C</u>H₃)₂), 24.7 (CH(<u>C</u>H₃)₂), 23.9 (CH(<u>C</u>H₃)₂), 23.7 (CH(<u>C</u>H₃)₂), 23.2 (<u>C</u>(CH₃)₃), 23.2 (CH(<u>C</u>H₃)₂), 22.1 (CH(<u>C</u>H₃)₂), 22.0 (CH(<u>C</u>H₃)₂).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 4.7 (*Si*^{*i*}Bu₃), -15.5 (*silepin Si*).

Anal. Calcd. [%] for C₃₉H₆₃N₃OSi₂: C, 72.50; H, 9.83; N, 6.50. Found [%]: C, 72.25; H, 9.80; N, 6.49.

Figure S1.¹H NMR spectrum of iminosiloxysilepin 2 in C₆D₆ at 300 K.

Figure S2. ¹³C{¹H} NMR spectrum of iminosiloxysilepin 2 in C_6D_6 at 300 K.

Figure S3. ²⁹Si{¹H} NMR spectrum of iminosiloxysilepin 2 in C₆D₆ at 300 K.

Figure S4. ¹H/²⁹Si HMBC NMR spectrum of iminosiloxysilepin 2 in C₆D₆ at 300 K.

1.3 Synthesis of (IDippN)('Bu₃SiO)Si(P₄) (3)

To a mixture of silylene 1 (100 mg, 155 μ mol, 1.0 eq.) and P₄ (19.2 mg, 155 μ mol, 1.0 eq.) was added benzene (3 mL). The Reaction mixture was stirred for 3 h whereby a color change from colorless to orange was observed. After removal of the solvent *in vacuo*, (IDippN)(^{*t*}Bu₃SiO)Si(P₄) (3) was

 $^{770.02 \text{ g/mol}}$ obtained as a pale orange solid (119 mg, 155 µmol, quantitative yield). Colorless crystals, suitable for single-crystal X-ray diffraction (SC-XRD) analysis, were obtained by cooling a saturated *n*-hexane solution of **3** to -35 °C for several days. Compound **3** is completely stable as a solid and in solution at ambient temperature.

<u>Note</u>: Compound **3** reacts selectively with an equimolar amount of silylene **1** to form a new product, which is most likely ((IDippN)(^{*i*}Bu₃SiO)Si)₂(P₄), but the reaction is extremely slow (only ~10% conversion after 10 days at 110 °C in benzene detected) and thus was not further studied. A similar reaction between an $R_2Si(P_4)$ cage compound and a silylene R_2Si : was reported previously.^[S5] **m.p.:** 120-121 °C (decomposition; color change from pale orange to orange).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.23–7.18 (m, 6H, C_{ar}<u>H</u>), 6.01 (s, 2H, NC<u>H</u>), 3.25 (sept, ³J = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.49 (d, ³J = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.17 (s, 27H, C(C<u>H</u>₃)₃), 1.14 (d, ³J = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 146.5 (*o*-<u>C</u>_{ar}), 141.7 (N<u>C</u>N), 134.7 (*ipso*-<u>C</u>_{ar}), 130.1 (*p*-<u>C</u>_{ar}H), 125.5 (*m*-<u>C</u>_{ar}H), 115.5 (N<u>C</u>H), 30.7 (C(<u>C</u>H₃)₃), 29.1 (<u>C</u>H(CH₃)₂), 24.9 (CH(<u>C</u>H₃)₂), 23.5 (CH(<u>C</u>H₃)₂), 23.4 (CH(<u>C</u>H₃)₂), 23.0 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 5.1 (*Si*^{*i*}Bu₃), -87.9 (broad s, *Si*P₄).

³¹P{¹H} NMR (203 MHz, C₆D₆, 300 K): δ [ppm] = 152.1 (dd, ¹*J*(P₂P₁) = 157.6 Hz, ¹*J*(P₃P₁) = 149.6 Hz, 2P, Si<u>P</u>₁), -327.7 (dt, ¹*J*(P₂P₃) = 181.6 Hz, ¹*J*(P₁P₃) = 149.6 Hz, 1P, <u>P</u>₃), -337.0 (dt, ¹*J*(P₃P₂) = 181.6 Hz, ¹*J*(P₁P₂) = 157.6 Hz, 1P, <u>P</u>₂). The assignment of the observed resonances to the respective ³¹P nuclei can be found in **Figure S8** (*vide infra*).

Anal. Calcd. [%] for C₃₉H₆₃N₃OP₄Si₂: C, 60.83; H, 8.25; N, 5.46. Found **[%]**: C, 60.53; H, 8.24; N, 5.30.

Figure S5. ¹H NMR spectrum of (IDippN)(^{*i*}Bu₃SiO)Si(P₄) (**3**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S6. ¹³C {¹H} NMR spectrum of (IDippN)('Bu₃SiO)Si(P₄) (**3**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S7. ²⁹Si $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si(P₄) (3) in C₆D₆ at 300 K.

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum of (IDippN)('Bu₃SiO)Si(P₄) (3) in C₆D₆ at 300 K.

1.4 Synthesis of (IDippN)(^tBu₃SiO)Si(H)(NH₂) (4)

H_NH₂ IDippN^{_Si}_OSi^tBu₃ **4** C₃₉H₆₆N₄OSi₂ 663.15 g/mol To a cooled (-80 °C) solution of silylene **1** (300 mg, 464 μ mol, 1.0 eq.) in *n*-hexane (10 mL) was added a 0.4 M NH₃ solution in 1,4-dioxane (1.16 mL, 7.91 mg, 464 μ mol, 1.0 eq.) under vigorous stirring. An immediate precipitation (1,4-dioxane) was observed. After stirring was continued at -80 °C for one hour, the solution was warmed to ambient temperature. All

volatiles were removed *in vacuo*, affording crude aminosilane **4** as a colorless solid. Multinuclear and 2D NMR analysis clearly revealed **4** as the major product. However, all further purification attempts via crystallization, sublimation or washing were unsuccessful so far.

<u>Note</u>: Since the central silicon atom is chiral, the small by-product could be a stereoisomer of **4**. In addition, (IDippN)('Bu₃SiO)Si(H)(NH₂) (**4**) reacts with excessive amounts of ammonia to an unidentified mixture of products, presumably also including elimination of the imino ligand under formation of IDippNH and (H₂N)('Bu₃SiO)Si(H)(NH₂). A similar σ -bond metathesis reaction between an Si–N bond and ammonia was previously observed.^[S6]

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.24–7.21 (m, 2H, *p*-C_{ar}<u>H</u>), 7.14–7.11 (m, 4H, *m*-C_{ar}<u>H</u>), 5.95 (s, 2H, NC<u>H</u>), 4.81 (s, 1H, Si<u>H</u>, ¹J_{SiH} = 243.8 Hz), 3.20 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 3.09 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 1.42 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.41 (d,

 ${}^{3}J = 6.9$ Hz, 6H, CH(C<u>H</u>₃)₂), 1.18 (d, ${}^{3}J = 6.9$ Hz, 6H, CH(C<u>H</u>₃)₂), 1.17 (d, ${}^{3}J = 6.9$ Hz, 6H, CH(C<u>H</u>₃)₂), 1.06 (s, 27H, C(C<u>H</u>₃)₃), -0.14 (br s, 2H. N<u>H</u>₂).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 148.2 (*o*-<u>C</u>_{ar}), 148.0 (*o*-<u>C</u>_{ar}), 143.7 (N<u>C</u>N), 134.6 (*ipso*-<u>C</u>_{ar}), 130.0 (*p*-<u>C</u>_{ar}H), 124.2 (*m*-<u>C</u>_{ar}H), 124.0 (*m*-<u>C</u>_{ar}H), 114.2 (N<u>C</u>H),

30.2 (C(<u>C</u>H₃)₃), 29.1 (<u>C</u>H(CH₃)₂), 25.5 (CH(<u>C</u>H₃)₂), 24.0 (CH(<u>C</u>H₃)₂), 23.2 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 1.3 (*Si*^{*i*}Bu₃), -66.5 (*Si*NH₂).

²⁹Si INEPT NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 1.3 (\underline{Si}^{i} Bu₃), -66.5 (d, ${}^{1}J_{HSi}$ = 243.8 Hz, <u>Si</u>NH₂).

Figure S9. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si(H)(NH₂) (**4**) in C_6D_6 at 300 K. Residual 1,4-dioxane is marked with an S.

Figure S10. ¹³C $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si(H)(NH₂) (4) in C₆D₆ at 300 K.

Figure S11. ²⁹Si $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si(H)(NH₂) (4) in C₆D₆ at 300 K.

Figure S12. $^{1}H/^{29}Si$ HMBC NMR spectrum of (IDippN)($^{\prime}Bu_{3}SiO$)Si(H)(NH₂) (4) in C₆D₆ at 300 K.

1.5 Synthesis of (IDippN)(^tBu₃SiO)Si(NTMSN)₂ (5)

TMS-N

IDippN²

To a stirred solution of silvlene 1 (50.0 mg, 77.4 µmol, 1.0 eq.) in benzene TMS (2 mL) was added TMSN₃ (20.5 µL, 17.8 mg, 155 µmol, 2.0 eq.). After an °<mark>OSi^tBu</mark>₃ immediately observed gas evolution (N₂), the reaction mixture was stirred for 5 further 30 min. Removal of all volatiles in vacuo provided silatetrazoline 5 as C45H81N7OSi4 848.53 g/mol a colorless solid (65.7 mg, 77.4 µmol, quantitative yield).

m.p.: 263-264 °C (decomposition; color change from colorless to yellow).

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.22–7.19 (m, 2H, *p*-C_{ar}<u>H</u>), 7.16–7.13 (m, 4H, *m*-C_{ar}<u>*H*</u>, overlapping with solvent signal), 5.89 (s, 2H, NC<u>*H*</u>), 3.30 (sept, ${}^{3}J = 6.9$ Hz, 2H, $CH(CH_3)_2$, 3.18 (sept, ${}^{3}J = 6.9$ Hz, 2H, $CH(CH_3)_2$), 1.46 (d, ${}^{3}J = 6.9$ Hz, 6H, $CH(CH_3)_2$), 1.43 (d, ${}^{3}J = 6.9$ Hz, 6H, CH(C<u>H</u>₃)₂), 1.16 (s, 27H, C(C<u>H</u>₃)₃), 1.09 (pseudo t, ${}^{3}J = 6.9$ Hz, 12H, CH(C<u>H</u>₃)₂), 0.28 (s, 9H, TMS), 0.24 (s, 9H, TMS).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 147.4 (*o*-C_{ar}), 147.4 (*o*-C_{ar}), 141.9 (NCN), 135.8 (*ipso-C*ar), 129.7 (*p*-CarH), 125.0 (*m*-CarH), 124.7 (*m*-CarH), 116.5 (NCH), 31.0 (C(CH₃)₃), 29.5 (CH(CH₃)₂), 29.1 (CH(CH₃)₂), 26.3 (CH(CH₃)₂), 25.8 (CH(CH₃)₂), 23.2 (CH(CH₃)₂), 23.1 (<u>C</u>(CH₃)₃), 23.1 (CH(<u>C</u>H₃)₂), 6.6 (<u>TMS</u>), 6.4 (<u>TMS</u>).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 4.7 (*Si*^{*t*}Bu₃), 2.3 (*TMS*), 0.7 (*TMS*), -90.6 (*Si*(NTMSN)₂).

Anal. Calcd. [%] for C45H81N7OSi4: C, 63.70; H, 9.62; N, 11.56. Found **[%]**: C, 63.86; H, 9.86; N, 11.29.

Figure S13. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si(NTMSN)₂ (10) in C₆D₆ at 300 K.

Figure S14. ¹³C ^{1}H NMR spectrum of (IDippN)(^{*i*}Bu₃SiO)Si(NTMSN)₂ (5) in C₆D₆ at 300 K.

Figure S15. ²⁹Si $\{^{1}H\}$ NMR spectrum of (IDippN)('Bu₃SiO)Si(NTMSN)₂ (5) in C₆D₆ at 300 K.

Figure S16. ¹H/²⁹Si HMBC NMR spectrum of (IDippN)('Bu₃SiO)Si(NTMSN)₂ (5) in C₆D₆ at 300 K.

1.6 Synthesis of (IDippN)('Bu₃SiO)Si=NSi'Bu₂Me (6)

Synthesis of Azido(di-tert-butylmethyl)silane ^tBu₂MeSiN₃

The following procedure represents a modified version of a method that has already been reported.[S4]

To a mixture of ^tBu₂MeSiBr (3.00 g, 12.6 mmol, 1.0 eq.) and NaN₃ (2.47 g, 37.9 mmol, 3.0 eq) was added THF (20 mL). The resulting colorless suspension was heated under reflux for 48 h. Subsequently, the product solution was flask-toflask condensed (50 °C / 5.0×10^{-3} mbar) to remove excess sodium azide. Removal 199.37 g/mol of THF in vacuo at 0 °C provided analytically pure 'Bu2MeSiN3 as a colorless liquid

(2.14 g, 10.7 mmol, 85%).

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 0.90 (s, 18H, C(CH₃)₃), -0.01 (s, 3H, SiCH₃). ¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 27.4 (C(<u>C</u>H₃)₃), 21.0 (<u>C</u>(CH₃)₃), -9.0 (Si<u>C</u>H₃). ²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 17.7 (*Si*CH₃).

Figure S17. ¹H NMR spectrum of 'Bu₂MeSiN₃ in C₆D₆ at 300 K.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of 'Bu₂MeSiN₃ in C₆D₆ at 300 K.

Figure S19. ²⁹Si $\{^{1}H\}$ NMR spectrum of 'Bu₂MeSiN₃ in C₆D₆ at 300 K.

Synthesis of (IDippN)('Bu₃SiO)Si=NSi'Bu₂Me (6)

N^{Si^tBu₂M IDippN^{Si}OSi^tBu₃ 6 C₄₈H₈₄N₄OSi₃ 817.48 g/mol} To a stirred solution of silylene **1** (300 mg, 464 μ mol, 1.0 eq.) in benzene (10 mL) was added a solution of ${}^{t}Bu_{2}MeSiN_{3}$ (92.6 mg, 464 μ mol, 1.0 eq.) in benzene (1 mL). After an immediately observed gas evolution (N₂), the reaction mixture was stirred for an additional hour. Removal of all volatiles *in vacuo* afforded silaimine **6** as a colorless solid (380 mg, 464 μ mol,

quantitative yield). Crystals, suitable for SC-XRD analysis were obtained by cooling a concentrated n-hexane solution of **6** to -35 °C for several days. Silaimine **6** is completely stable as a solid and in solution at ambient temperature.

<u>Note:</u> At high temperatures a very slow decomposition to an unidentified mixture of products was observed (~5% decomposition after 24 h at 130 °C).

m.p.: 302-303 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.21–7.18 (m, 2H, *p*-C_{ar}<u>H</u>), 7.13–7.11 (m, 4H, *m*-C_{ar}<u>H</u>), 6.01 (s, 2H, NC<u>H</u>), 3.15 (sept, ³*J* = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.40 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.14 (s, 18H, Si^{*t*}<u>Bu</u>₂Me), 1.11 (s, 27H, Si^{*t*}<u>Bu</u>₃), 1.08 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 0.16 (s, 3H, Si^{*t*}Bu₂<u>Me</u>).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 146.5 (*o*-<u>C</u>_{ar}), 141.1 (N<u>C</u>N), 133.5 (*ipso*-<u>C</u>_{ar}), 129.9 (*p*-<u>C</u>_{ar}H), 125.0 (*m*-<u>C</u>_{ar}H), 115.5 (N<u>C</u>H), 30.3 (Si(C(<u>C</u>H₃)₃)₃), 29.7 (Si(C(<u>C</u>H₃)₃)₂Me), 29.0 (<u>C</u>H(CH₃)₂), 25.2 (CH(<u>C</u>H₃)₂), 23.5 (CH(<u>C</u>H₃)₂), 23.2 (Si(<u>C</u>(CH₃)₃)₃), 21.2 (Si(<u>C</u>(CH₃)₃)₂Me), -6.6 (Si(C(CH₃)₃)₂<u>Me</u>).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 6.8 (*Si*^{*t*}Bu₃), -6.7 (*Si*^{*t*}Bu₂Me), -50.1 (*Si*=N). Anal. Calcd. [%] for C₄₈H₈₄N₄OSi₃: C, 70.52; H, 10.36; N, 6.85. Found [%]: C, 70.35; H, 10.17; N, 6.84.

Figure S20. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si=NSi'Bu₂Me (6) in C₆D₆ at 300 K.

Figure S21. ¹³C $\{^{1}H\}$ NMR spectrum of (IDippN)('Bu₃SiO)Si=NSi'Bu₂Me (6) in C₆D₆ at 300 K.

Figure S22. ²⁹Si $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*i*}Bu₃SiO)Si=NSi^{*i*}Bu₂Me (6) in C₆D₆ at 300 K.

Figure S23. ¹H/²⁹Si HMBC NMR spectrum of (IDippN)('Bu₃SiO)Si=NSi'Bu₂Me (6) in C₆D₆ at 300 K.

1.7 Synthesis of Azaoxasiletane (7)

A solution of silaimine **6** (75.0 mg, 91.8 μ mol) in benzene (3 mL) was degassed and subsequently exposed to CO₂ (1 bar) under vigorous stirring at room-temperature. After stirring for additional 30 min, all volatiles were removed *in vacuo*. Azaoxasiletane **7** was afforded as a colorless solid (79.0 mg, 91.8 μ mol, quantitative yield). Suitable crystals for SC-XRD analysis were obtained by cooling a saturated toluene

solution of 7 to -35 °C for several days. Azaoxasiletane 7 is completely stable as a solid and in solution at room-temperature.

Note: At high temperatures a very slow decomposition to an unidentified mixture of products was observed (~10% decomposition after 24 h at 130 °C).

m.p.: 202-203 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.26–7.23 (m, 2H, *p*-C_{ar}<u>H</u>), 7.19–7.11 (m, 4H, *m*-C_{ar}<u>H</u>, overlapping with solvent signal), 6.05 (s, 2H, NC<u>H</u>), 3.21 (sept, ³*J* = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 3.09 (sept, ³*J* = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 1.50 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.41 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.20 (s, 9H, Si'<u>Bu</u>2Me), 1.08 (s, 36H, Si'<u>Bu</u>₃ + Si'<u>Bu</u>2Me), 1.06 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.05 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 0.09 (s, 3H, Si'Bu₂<u>Me</u>).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 156.7 (<u>C</u>=O), 146.9 (*o*-<u>C</u>_{ar}), 146.6 (*o*-<u>C</u>_{ar}), 143.0 (N<u>C</u>N), 134.0 (*ipso*-<u>C</u>_{ar}), 130.1 (*p*-<u>C</u>_{ar}H), 124.9 (*m*-<u>C</u>_{ar}H), 124.7 (*m*-<u>C</u>_{ar}H), 116.3 (N<u>C</u>H), 30.3 (Si(C(<u>C</u>H₃)₃)₃), 29.2 (Si(C(<u>C</u>H₃)₃)₂Me), 29.1 (<u>C</u>H(CH₃)₂), 29.0 (<u>C</u>H(CH₃)₂), 25.8 (CH(<u>C</u>H₃)₂), 25.7 (CH(<u>C</u>H₃)₂), 23.3 (CH(<u>C</u>H₃)₂), 23.0 (Si(<u>C</u>(CH₃)₃)₃), 22.9 (CH(<u>C</u>H₃)₂), 20.3 (Si(<u>C</u>(CH₃)₃)₂Me), 20.3 (Si(<u>C</u>(CH₃)₃)₂Me), -5.9 (Si(C(CH₃)₃)₂<u>Me</u>).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 8.4 (*Si*^{*t*}Bu₂Me), 7.7 (*Si*^{*t*}Bu₃), -89.6 (*Si*OC=O). Anal. Calcd. [%] for C₄₉H₈₄N₄O₃Si₃: C, 68.32; H, 9.83; N, 6.50. Found [%]: C, 67.71; H, 9.70; N, 6.73.

Figure S24. ¹H NMR spectrum of azaoxasiletane 7 in C₆D₆ at 300 K.

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of azaoxasiletane 7 in C₆D₆ at 300 K.

Figure S26. ²⁹Si $\{^{1}H\}$ NMR spectrum of azaoxasiletane 7 in C₆D₆ at 300 K.

Figure S27. ¹H/²⁹Si HMBC NMR spectrum of azaoxasiletane 7 in C₆D₆ at 300 K.

1.8 Synthesis of Oxatriazasilole (8)

A solution of silaimine 6 (75.0 mg, 91.8 µmol) in benzene (3 mL) was degassed and subsequently exposed to N₂O (1 bar) under vigorous stirring at ambient temperature. After an additional hour of stirring, all volatiles were removed in vacuo. Oxatriazasilole 8 was provided as a colorless solid (79.0 mg, 91.8 µmol, quantitative yield). Heterocycle 8 is completely stable as a solid and in solution at ambient and elevated temperatures (≤ 130 °C).

m.p.: 350-351 °C (decomposition; color change from colorless to yellow).

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.24–7.19 (m, 4H, *m*-C_{ar}<u>H</u>), 7.13–7.11 (m, 2H, *p*-C_{ar}*H*), 5.98 (s, 2H, NC*H*), 3.36 (sept, ${}^{3}J$ = 6.9 Hz, 2H, C*H*(CH₃)₂), 3.04 (sept, ${}^{3}J$ = 6.9 Hz, 2H, $C\underline{H}(CH_3)_2$, 1.47 (d, ${}^{3}J = 6.9$ Hz, 6H, $CH(C\underline{H}_3)_2$), 1.39 (d, ${}^{3}J = 6.9$ Hz, 6H, $CH(C\underline{H}_3)_2$), 1.13 (s, 27H, Si^t<u>Bu</u>₃), 1.12–1.09 (m, 21H, Si^t<u>Bu</u>₂Me + CH(C<u>H</u>₃)₂), 1.05 (s, 9H, Si^t<u>Bu</u>₂Me), 0.18 (s, 3H, $Si^{t}Bu_{2}Me$).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 147.8 (*o*-<u>C</u>_{ar}), 146.8 (*o*-<u>C</u>_{ar}), 142.1 (N<u>C</u>N), 134.9 (*ipso-Car*), 129.8 (*p-Car*H), 125.0 (*m-Car*H), 124.1 (*m-Car*H), 116.0 (NCH), 30.4 $(Si(C(CH_3)_3)_3),$ 29.3 (<u>C</u>H(CH₃)₂), 29.2 (<u>C</u>H(CH₃)₂), 28.6 $(Si(C(\underline{C}H_3)_3)_2Me),$ 28.4 $(Si(C(\underline{C}H_3)_3)_2Me), 25.9 (CH(\underline{C}H_3)_2), 25.3 (CH(\underline{C}H_3)_2), 23.9 (CH(\underline{C}H_3)_2), 23.0 (Si(\underline{C}(CH_3)_3)_3), 22.8 (CH(\underline{C}H_3)_2), 20.6 (Si(\underline{C}(CH_3)_3)_2Me), 20.5 (Si(\underline{C}(CH_3)_3)_2Me), -4.3 (Si(C(CH_3)_3)_2\underline{Me}).$ ²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 9.8 (<u>Si</u>^{*i*}Bu₃), 3.7 (<u>Si</u>^{*i*}Bu₂Me), -103.7 (<u>Si</u>ON₃). Anal. Calcd. [%] for C₄₈H₈₄N₆O₂Si₃: C, 66.92; H, 9.83; N, 9.76. Found [%]: C, 67.56; H, 9.74; N, 9.52.

LIFDI-MS: calculated for 8 ($C_{48}H_{84}N_6O_2Si_3$): 860.5964 observed: 860.5765

Figure S28. ¹H NMR spectrum of oxatriazasilole 8 in C₆D₆ at 300 K.

Figure S29. ¹³C $\{^{1}H\}$ NMR spectrum of oxatriazasilole 8 in C₆D₆ at 300 K.

Figure S30. ²⁹Si{¹H} NMR spectrum of oxatriazasilole 8 in C_6D_6 at 300 K.

Figure S31. LIFDI-MS spectrometry (detail view with isotope pattern) of oxatriazasilole **8**. Measured (left; m/z = 860.5765) and simulated (right; m/z = 860.5964) mass spectrum.

1.9 Synthesis of (IDippN)(^tBu₃SiO)Si(O₂C=O) (9)

A solution of silylene 1 (100 mg, 155 μ mol) in toluene (3 mL) was frozen in liquid nitrogen and degassed. The solution was cooled to -80 °C and exposed to CO₂ (1 bar) under vigorous stirring. Subsequently, the reaction mixture was warmed to ambient temperature and the excess of CO₂ and the solvent were removed *in vacuo*. Crystallization of the residue from *n*-hexane at -35 °C provided silicon carbonate complex 9 as colorless crystals (91.5 mg, 130 μ mol, 84%), which were suitable for SC-XRD analysis. Compound 9 is completely stable as a solid and in solution at room

<u>Note:</u> Silicon carbonate complex **9** reacts with another equivalent of CO_2 in a slow equilibrium reaction after several days to compound **9'**. Unfortunately, complete conversion and isolation of **9'** was not possible, as heating of the reaction mixture or removal of CO_2 selectively regenerates **9**. Presumably CO_2 inserts into the Si–N bond; for NMR characterization of **9'** see below.

m.p.: 177-178 °C (gas formation, sticky colorless oil).

temperature.

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.30 (t, ³*J* = 7.8 Hz, 2H, *p*-C_{ar}<u>*H*</u>), 7.16 (d, ³*J* = 7.8 Hz, 4H, *m*-C_{ar}<u>*H*</u>, overlapping with solvent signal), 5.93 (s, 2H, NC<u>*H*</u>), 2.88 (sept, ³*J* = 6.9 Hz, 4H, C<u>*H*</u>(CH₃)₂), 1.41 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>*H*</u>₃)₂), 1.10 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>*H*</u>₃)₂), 0.97 (s, 27H, C(C<u>*H*</u>₃)₃).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 149.5 (O₂<u>C</u>=O), 146.7 (*o*-<u>C</u>_{ar}), 146.2 (N<u>C</u>N), 132.4 (*ipso*-<u>C</u>_{ar}), 130.8 (*p*-<u>C</u>_{ar}H), 124.7 (*m*-<u>C</u>_{ar}H), 115.5 (N<u>C</u>H), 29.7 (C(<u>C</u>H₃)₃), 29.2 (<u>C</u>H(CH₃)₂), 24.6 (CH(<u>C</u>H₃)₂), 23.2 (CH(<u>C</u>H₃)₂), 22.9 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 7.4 (<u>*Si*</u>^{*t*}Bu₃), -90.9 (<u>*Si*</u>O₂C=O).

Anal. Calcd. [%] for C₄₀H₆₃N₃O₄Si₂: C, 68.04; H, 8.99; N, 5.95. Found [%]: C, 68.01; H, 9.13; N, 5.94.

Figure S32. ¹H NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si(O₂C=O) (9) in C₆D₆ at 300 K.

Figure S33. ¹³C{¹H} NMR spectrum of (IDippN)(^tBu₃SiO)Si(O₂C=O) (9) in C₆D₆ at 300 K.

Figure S34.²⁹Si{¹H} NMR spectrum of (IDippN)('Bu₃SiO)Si(O₂C=O) (**9**) in C₆D₆ at 300 K.

Multinuclear NMR Characterization of Compound 9':

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.26 (t, ³J = 7.8 Hz, 2H, *p*-C_{ar}<u>H</u>), 7.04 (d, ³J = 7.8 Hz, 4H, *m*-C_{ar}<u>H</u>), 6.05 (s, 2H, NC<u>H</u>), 2.58 (sept, ³J = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.33 (d, ³J = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.09 (s, 27H, C(C<u>H</u>₃)₃) 0.97 (d, ³J = 6.7 Hz, 12H, CH(C<u>H</u>₃)₂, overlapping with C(CH₃)₃ resonance of **9**).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 163.1 (<u>C</u>=O), 152.5 (O₂<u>C</u>=O), 148.8 (N<u>C</u>N), 145.7 (*o*-<u>C</u>_{ar}), 131.9 (*p*-<u>C</u>_{ar}H), 130.2 (*ipso*-<u>C</u>_{ar}), 124.8 (*m*-<u>C</u>_{ar}H), 119.2 (N<u>C</u>H), 29.9 (C(<u>C</u>H₃)₃), 29.4 (<u>C</u>H(CH₃)₂), 24.8 (CH(<u>C</u>H₃)₂), 23.3 (CH(<u>C</u>H₃)₂), 23.1 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 7.1 (<u>Si</u>^{*i*}Bu₃), -126.9 (<u>Si</u>O₂C=O).

Figure S35. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si(O₂C=O) (9) and 9' in C₆D₆ at 300 K. The respective resonances of compound 9 are marked with asterisks *.

Figure S36. ¹³C{¹H} NMR spectrum of (IDippN)(^{*i*}Bu₃SiO)Si(O₂C=O) (9) and 9' in C₆D₆ at 300 K. The respective resonances of compound 9 are marked with asterisks *.

Figure S37. ²⁹Si{¹H} NMR spectrum of (IDippN)('Bu₃SiO)Si(O₂C=O) (9) and 9' in C₆D₆ at 300 K. The respective resonances of compound 9 are marked with asterisks *.

1.10 Synthesis of *trans*-Cyclodisiloxane [(IDippN)(^tBu₃SiO)Si=O]₂ (10a)

^tBu₃SiO NIDipp IDippN Si O Si OSi^tBu₃ **10a** C₇₈H₁₂₆N₆O₄Si₄ 1324.24 g/mol A solution of silylene 1 (300 mg, 464 μ mol) in *n*-hexane (6 mL) was frozen in liquid nitrogen and degassed. The solution was cooled to – 80 °C and exposed to N₂O (1 bar) under vigorous stirring. Subsequently, the reaction mixture was warmed to ambient temperature with concomitant formation of a fine white precipitate. The solid was

separated *via* filtration, washed with *n*-hexane and dried *in vacuo* to give pure *trans*cyclodisiloxane **10a** as a white powder (247 mg, 187 μ mol, 81%). Suitable crystals for SC-XRD analysis were obtained by cooling an *n*-hexane/toluene solution of **10a** to -35 °C for several days. Compound **10a** is completely stable as a solid and in solution even under air and moisture.

m.p.: 335-336 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.27 (*pseudo* t, ³*J* = 7.6 Hz, 4H, *p*-C_{ar}*<u>H</u>*), 7.17 (dd, ⁴*J* = 1.6 Hz, ³*J* = 7.6 Hz, 4H, *m*-C_{ar}*<u>H</u>*), 7.02 (dd, ⁴*J* = 1.6 Hz, ³*J* = 7.6 Hz, 4H, *m*-C_{ar}*<u>H</u>*), 5.83 (s, 4H, NC*<u>H</u>*), 3.48 (sept, ³*J* = 6.7 Hz, 4H, C<u>*H*</u>(CH₃)₂), 2.90 (sept, ³*J* = 6.7 Hz, 4H, C<u>*H*</u>(CH₃)₂), 1.43 (d, ³*J* = 6.7 Hz, 12H, CH(C<u>*H*</u>₃)₂), 1.20 (s, 54H, C(C<u>*H*</u>₃)₃), 1.15 (d, ³*J* = 6.7 Hz, 12H, CH(C<u>*H*</u>₃)₂), 1.13 (d, ³*J* = 6.7 Hz, 12H, CH(C<u>*H*</u>₃)₂), 1.10 (d, ³*J* = 6.7 Hz, 12H, CH(C<u>*H*</u>₃)₂).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 148.8 (*o*- \underline{C}_{ar}), 147.3 (*o*- \underline{C}_{ar}), 145.1 (N<u>C</u>N), 136.1 (*ipso*- \underline{C}_{ar}), 129.5 (*p*- \underline{C}_{ar} H), 125.2 (*m*- \underline{C}_{ar} H), 124.2 (*m*- \underline{C}_{ar} H), 116.5 (N<u>C</u>H), 31.1 (C(<u>C</u>H₃)₃), 29.1 (<u>C</u>H(CH₃)₂), 28.2 (<u>C</u>H(CH₃)₂), 27.5 (CH(<u>C</u>H₃)₂), 26.1 (CH(<u>C</u>H₃)₂), 23.9 (CH(<u>C</u>H₃)₂), 23.2 (<u>C</u>(CH₃)₃), 22.6 (CH(<u>C</u>H₃)₂).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 5.6 (*Si*^{*i*}Bu₃), -83.5 (*S*i₂O₂).

Anal. Calcd. [%] for C₇₈H₁₂₆N₆O₄Si₄: C, 70.75; H, 9.59; N, 6.35. Found [%]: C, 70.99; H, 9.90; N, 6.16.

Figure S38. ¹H NMR spectrum of [(IDippN)(^{*t*}Bu₃SiO)Si=O]₂ (**10a**) in C₆D₆ at 300 K.

Figure S39. ¹³C{¹H} NMR spectrum of $[(IDippN)(^{t}Bu_{3}SiO)Si=O]_{2}$ (10a) in C₆D₆ at 300 K.

Figure S40. ²⁹Si{¹H} NMR spectrum of [(IDippN)('Bu₃SiO)Si=O]₂ (10a) in C₆D₆ at 300 K.

1.11 Synthesis of Silicon Diselenide [(IDippN)('Bu₃SiO)Si=Se]₂ (10b)

^tBu₃SiO, Se NIDipp IDippN, Si Se Si, OSi^tBu₃ **10b** C₇₈H₁₂₆N₆O₂Se₂Si₄ 1450.17 g/mol

To a solution of silylene **1** (100 mg, 155 μ mol, 1.0 eq.) in toluene (3 mL) was added gray selenium powder (12.2 mg, 155 μ mol, 1.0 eq.) at room temperature. Quantitative conversion of **1** to silicon diselenide **10b** was detected by ¹H NMR spectroscopy after stirring the reaction

mixture for 3 days. Subsequently, the solvent was removed *in vacuo* and the residue recrystallized from *n*-hexane/toluene at -35 °C providing **10b** as colorless crystals (95.7 mg, 66.0 mmol, 85%) suitable for SC-XRD analysis. Compound **10b** is completely stable as a solid, but decomposes (or dimerizes) extremely slowly in solution to an unidentified species, which thus was not investigated in more detail.

<u>Note</u>: The NMR data obtained indicate that **10b** presumably exists as monomer **10b'** in solution. The significantly downfield-shifted ²⁹Si NMR resonance for the SiSe moiety compared to that observed for the SiO moiety in **10a** ($\delta = -83.5$ ppm) along with the decreased signal splitting in the ¹H NMR suggest a monomer with a three-coordinate Si nucleus.

m.p.: 100-101 °C (decomposition; color change from colorless to red).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.20–7.17 (m, 2H, *p*-C_{ar}<u>H</u>), 7.13–7.11 (m, 4H, *m*-C_{ar}<u>H</u>), 6.08 (s, 2H, NC<u>H</u>), 3.15 (sept, ³*J* = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.49 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.10 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.06 (s, 27H, C(C<u>H</u>₃)₃).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 147.7 (N<u>C</u>N), 147.3 (*o*-<u>C</u>_{ar}), 132.7 (*ipso*-<u>C</u>_{ar}), 130.5 (*p*-<u>C</u>_{ar}H), 124.4 (*m*-<u>C</u>_{ar}H), 116.3 (N<u>C</u>H), 30.0 (C(<u>C</u>H₃)₃), 29.1 (<u>C</u>H(CH₃)₂), 25.4 (CH(<u>C</u>H₃)₂), 23.8 (CH(<u>C</u>H₃)₂), 23.2 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 8.8 (*Si*^{*i*}Bu₃), 6.2 (*Si*^{*i*}Se).

Anal. Calcd. [%] for C₇₈H₁₂₆N₆O₂Se₂Si₄: C, 64.60; H, 8.76; N, 5.80. Found [%]: C, 66.42; H, 8.82; N, 5.59.

Figure S41. ¹H NMR spectrum of $[(IDippN)(^{t}Bu_{3}SiO)Si=Se]_{2}$ (**10b**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S42. ¹³C{¹H} NMR spectrum of $[(IDippN)(^{7}Bu_{3}SiO)Si=Se]_{2}$ (**10b**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S43. ²⁹Si{¹H} NMR spectrum of $[(IDippN)(^{t}Bu_{3}SiO)Si=Se]_{2}$ (10b) in C₆D₆ at 300 K.

1.12 Synthesis of Silicon Ditelluride (IDippN)('Bu₃SiO)Si=Te (10c)

by carrying out the reaction at elevated temperatures, so that after heating the reaction mixture to 50 °C for 3 d quantitative conversion was already achieved). Subsequent removal of the solvent afforded **10c** as an off-white solid (119.8 mg, 155 μ mol, quantitative yield). Compound **10c** is completely stable as a solid and in solution at ambient temperature.

<u>Note</u>: The NMR data obtained indicate that **10c** presumably exists as monomer **10c'** in solution. The significantly downfield-shifted ²⁹Si NMR resonance for the SiTe moiety compared to that observed for the SiO moiety in **10a** ($\delta = -83.5$ ppm) along with the decreased signal splitting in the ¹H NMR suggest a monomer with a three-coordinate Si nucleus.

m.p.: 220-221 °C (decomposition; color change from colorless to black).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.21–7.17 (m, 2H, *p*-C_{ar}<u>H</u>), 7.14–7.11 (m, 4H, *m*-C_{ar}<u>H</u>), 6.09 (s, 2H, NC<u>H</u>), 3.16 (sept, ³*J* = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.50 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.08 (d, ³*J* = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.06 (s, 27H, C(C<u>H</u>₃)₃).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 147.1 (*o*-<u>C</u>_{ar}), 146.9 (N<u>C</u>N), 132.8 (*ipso*-<u>C</u>_{ar}), 130.5 (*p*-<u>C</u>_{ar}H), 124.5 (*m*-<u>C</u>_{ar}H), 116.5 (N<u>C</u>H), 30.2 (C(<u>C</u>H₃)₃), 29.1 (<u>C</u>H(CH₃)₂), 25.5 (CH(<u>C</u>H₃)₂), 24.0 (CH(<u>C</u>H₃)₂), 23.2 (<u>C</u>(CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 10.1 (*Si*^{*i*}Bu₃), -14.6 (*<u>Si</u>^{<i>i*}Ce).

Anal. Calcd. [%] for C₇₈H₁₂₆N₆O₂Te₂Si₄: C, 60.54; H, 8.21; N, 5.43. Found [%]: C, 60.46; H, 8.27; N, 5.41.

Figure S44. ¹H NMR spectrum of $[(IDippN)('Bu_3SiO)Si=Te]_2$ (**10c**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S45. ¹³C{¹H} NMR spectrum of $[(IDippN)(^{t}Bu_{3}SiO)Si=Te]_{2}$ (**10c**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S46. ²⁹Si{¹H} NMR spectrum of $[(IDippN)(^{t}Bu_{3}SiO)Si=Te]_{2}$ (10c) in C₆D₆ at 300 K.

1.13 Synthesis of cis/trans-Cyclodisiloxane [(IDippNO)('Bu3SiO)Si=O]2 (11)

^tBu₃SiO IDippNO^{**}Si *O*NIDipp *cis/trans*-**11** C₇₈H₁₂₆N₆O₆Si₄ 1356.24 g/mol A solution of silylene 1 (100 mg, 155 μ mol) in toluene (3 mL) was frozen in liquid nitrogen and degassed. The solution was cooled to -80 °C and exposed to O₂ (1 bar) under vigorous stirring. Subsequently, the reaction mixture was warmed to ambient temperature and the excess of O₂ and the solvent were removed *in*

vacuo. Crystallization of the residue from *n*-hexane/toluene at -35 °C provided *cis/trans*cyclodisiloxane **11** as colorless crystals (73.2 mg, 54.0 µmol, 70%), which were suitable for SC-XRD analysis (*cis*-**11**). Compound **11** is completely stable as a solid and in solution even under air and moisture.

<u>Note:</u> *cis/trans*-Cyclodisiloxane **11** is insoluble in *n*-hexane and sparingly soluble in benzene. Based on the results of SC-XRD analyses, we assume that the main product of the reaction is the *cis*-isomer formed under kinetic control. The *cis/trans*-ratio of **11** was calculated by ¹H NMR spectroscopy to about 71/29. The assignment of the resonances in the ¹H and ¹³C NMR spectra proved to be difficult/impossible because many of them superimpose. Hence, in the following only those signals are given that could be clearly assigned. Carrying out the reaction at higher temperatures leads to a less selective oxygenation and formation of by-products.

m.p.: 298-299 °C (decomposition; color change from colorless to yellow).

Major isomer *cis*-cyclodisiloxane 11 (~71%):

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 6.13 (d, ³J = 2.6 Hz, 1H, NC<u>H</u>), 5.59 (d, ³J = 2.6 Hz, 1H, NC<u>H</u>), 1.48 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.48 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.08 (s, 27H, C(C<u>H</u>₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 6.9 (*Si*^{*i*}Bu₃), -84.5 (*Si*₂O₂).

Minor isomer *trans*-cyclodisiloxane 11 (~29%):

¹H NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 5.79 (d, ³J = 2.6 Hz, 1H, NC<u>H</u>), 5.66 (d, ³J = 2.6 Hz, 1H, NC<u>H</u>), 1.02 (s, 27H, C(C<u>H</u>₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 3.9 (*Si*^{*t*}Bu₃).

Anal. Calcd. [%] for C₇₈H₁₂₆N₆O₆Si₄: C, 69.08; H, 9.36; N, 6.20. Found [%]: C, 68.12; H, 9.55; N, 6.05.

Figure S47. ¹H NMR spectrum of $[(IDippNO)('Bu_3SiO)Si=O]_2$ (11) in C₆D₆ at 300 K. Unambiguously assigned resonances for the minor *trans*-product and residual solvent are labeled with asterisks * and S, respectively.

Figure S48. ²⁹Si{¹H} NMR spectrum of $[(IDippNO)(^{7}Bu_{3}SiO)Si=O]_{2}$ (11) in C₆D₆ at 300 K. The unambiguously assigned resonance for the minor *trans*-product is labeled with an asterisk *.

Figure S49. ¹H/²⁹Si HMBC NMR spectrum of [(IDippNO)('Bu₃SiO)Si=O]₂ (11) in C₆D₆ at 300 K.

1.14 Synthesis of (IDippN)('Bu₃SiO)Si(B(C₆F₅)₃) (12a)

To a solution of silylene 1 (100 mg, 155 μ mol, 1.0 eq.) in *n*-hexane (3 mL) was added a solution of B(C₆F₅)₃ (BCF) (79.2 mg, 155 μ mol, 1.0 eq.) in *n*-hexane (1 mL) at room temperature. After stirring the resulting colorless solution for 30 min, the solvent was removed *in vacuo*. Crystallization of the residue from *n*-hexane at -35 °C afforded silylene-BCF adduct **12a** as colorless crystals (149 mg, 129 μ mol, 83%), which were suitable for SC-XRD

analysis. Compound 12a is completely stable as a solid and in solution at room-temperature.

<u>Note</u>: Due to coupling with the ¹¹B nucleus (high quadrupole moment and spin ¹¹B = 3/2), several resonances are broadened in the NMR spectra or were not observable at all.

m.p.: 200-201 °C (decomposition; color change from colorless to orange).

¹**H NMR (500 MHz, C₆D₆, 300 K):** δ [ppm] = 7.16–7.11 (m, 4H, *m*-C_{ar}<u>H</u>, overlapping with solvent signal), 6.80 (br s, 2H, *p*-C_{ar}<u>H</u>), 5.98 (s, 2H, NC<u>H</u>), 3.15–3.09 (m, 2H, C<u>H</u>(CH₃)₂), 2.96–2.85 (m, 2H, C<u>H</u>(CH₃)₂), 1.31–1.12 (m, 12H, CH(C<u>H</u>₃)₂), 0.91–0.87 (m, 12H, CH(C<u>H</u>₃)₂), 0.81 (s, 27H, C(C<u>H</u>₃)₃).

¹¹B{¹H} NMR (128 MHz, C₆D₆, 300 K): δ [ppm] = -20.3.

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 149.6 (<u>C</u>F), 148.9 (*o*-<u>C</u>_{ar}), 147.7 (<u>C</u>F), 147.5 (*o*-<u>C</u>_{ar}), 147.0 (<u>C</u>F), 146.0 (<u>C</u>F), 145.4 (N<u>C</u>N), 138.8 (<u>C</u>F), 136.7 (<u>C</u>F), 132.8 (*ipso*-<u>C</u>_{ar}), 130.4 (*p*-<u>C</u>_{ar}H), 124.7 (*m*-<u>C</u>_{ar}H), 124.5 (*m*-<u>C</u>_{ar}H), 117.2 (N<u>C</u>H), 30.1 (<u>C</u>H(CH₃)₂), 29.7 (C(<u>C</u>H₃)₃), 28.5 (<u>C</u>H(CH₃)₂), 26.1 (CH(<u>C</u>H₃)₂), 25.9 (CH(<u>C</u>H₃)₂), 22.7 (CH(<u>C</u>H₃)₂), 22.6 (CH(<u>C</u>H₃)₂), 22.4 (<u>C</u>(CH₃)₃).

¹⁹F{¹H} NMR (471 MHz, C₆D₆, 300 K): δ [ppm] = -127.6, -157.7, -162.1.

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 11.4 (*Si*^{*t*}Bu₃)

The resonance for the low-valent Si atom (silylene Si) was not observed.

Anal. Calcd. [%] for C57H63BF15N3OSi2: C, 59.12; H, 5.48; N, 3.63. Found **[%]**: C, 58.19; H, 5.72; N, 3.58.

Figure S50. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si(B(C₆F₅)₃) (**12a**) in C₆D₆ at 300 K.

Figure S51. ¹³C{¹H} NMR spectrum of (IDippN)(${}^{t}Bu_{3}SiO$)Si(B(C₆F₅)₃) (**12a**) in C₆D₆ at 300 K. Residual *n*-hexane is labeled with S.

Figure S52. ²⁹Si{¹H} NMR spectrum of $(IDippN)(Bu_3SiO)Si(B(C_6F_5)_3)$ (12a) in C₆D₆ at 300 K.

1.15 Synthesis of (IDippN)('Bu₃SiO)Si=O(IMe₄) (13a)

A thick-walled, pressurizeable Schlenk flask with a rubber septum, containing a solution of silylene **1** (150 mg, 232 μ mol, 1.0 eq.) in *n*-pentane (10 mL) was cooled to -130 °C. A precooled (-80 °C) solution of IMe₄ (28.8 mg, 232 μ mol, 1.0 eq.) in toluene (0.5 mL) was added under vigorous stirring. A color change from colorless to yellow indicated formation of the NHC-stabilized silylene ((IDippN)('Bu₃SiO)Si(IMe₄)). Subsequently, the rubber septum was replaced by a PTFE-sealed screw cap

and the reaction mixture was stirred for 30 min at -130 °C. The mixture was then frozen in liquid nitrogen, degassed and warmed to -130 °C. The solution was carefully exposed to N₂O (1 bar; **DANGER**: possible condensation of N₂O) and warmed to room-temperature, whereby a color change from yellow to colorless was observed. After removal of all volatiles *in vacuo*, the residue was washed with *n*-hexane. The IMe₄-stabilized silanoic ester derivative **13a** was afforded as a colorless solid (165 mg, 210 µmol, 90%). Colorless crystals, suitable for SC-XRD analysis, were obtained by cooling a saturated toluene solution of **13a** to -35 °C for several days. NHC adduct **13a** is completely stable as a solid and in solution at ambient and elevated temperatures (≤ 130 °C).

<u>Note</u>: The observed unusual broad splitting of the NHC wingtip methyl protons ($\Delta \delta = 1.03$ ppm) in the ¹H NMR spectrum presumably originates from hydrogen bonding of one methyl C–H proton to the oxygen atom of the Si=O bond. This assumption is supported by the solid-state structure of **13a** (*vide infra*), which revealed a close O···H distance of 2.153 Å, being much shorter than the sum of the van der Waals radii of hydrogen and oxygen (2.72 Å).^[S7]

m.p.: 209-210 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.21 (t, ³*J* = 7.8 Hz, 2H, *p*-C_{ar}*<u>H</u>), 7.12–7.09 (m, 4H, <i>m*-C_{ar}*<u>H</u>), 6.03 (s, 2H, NC<u><i>H*</u>), 4.22 (s, 3H, N_{NHC}C<u>*H*</u>₃), 3.38 (sept, ³*J* = 6.9 Hz, 2H, C<u>*H*</u>(CH₃)₂), 3.29 (sept, ³*J* = 6.9 Hz, 2H, C<u>*H*</u>(CH₃)₂), 3.19 (s, 3H, N_{NHC}C<u>*H*</u>₃), 1.40 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>*H*</u>₃)₂), 1.37–1.34 (m, 12H, CH(C<u>*H*</u>₃)₂ + C_{NHC}C<u>*H*</u>₃), 1.22 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>*H*</u>₃)₂), 1.22 (d, ³*J* = 6.9 Hz, 6H, CH(C(<u>*H*</u>₃)₂), 1.17 (s, 27H, C(C<u>*H*</u>₃)₃).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 159.6 (*carbene* <u>C</u>), 148.6 (*o*-<u>C</u>_{ar}), 148.5 (*o*-<u>C</u>_{ar}), 144.1 (N<u>C</u>N), 136.0 (*ipso*-<u>C</u>_{ar}), 128.8 (*p*-<u>C</u>_{ar}H), 124.7 (<u>C</u>_{NHC}CH₃), 123.6 (*m*-<u>C</u>_{ar}H), 123.5 (*m*-<u>C</u>_{ar}H + <u>C</u>_{NHC}CH₃), 114.7 (N<u>C</u>H), 33.8 (N_{NHC}<u>C</u>H₃), 33.4 (N_{NHC}<u>C</u>H₃), 30.7 (C(<u>C</u>H₃)₃), 29.2 (<u>C</u>H(CH₃)₂), 29.1 (<u>C</u>H(CH₃)₂), 25.2 (CH(<u>C</u>H₃)₂), 25.1 (CH(<u>C</u>H₃)₂), 23.4 (<u>C</u>(CH₃)₃), 23.3 (CH(<u>C</u>H₃)₂), 22.9 (CH(<u>C</u>H₃)₂), 7.8 (C_{NHC}<u>C</u>H₃), 7.8 (C_{NHC}<u>C</u>H₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 1.3 (*Si*^tBu₃), -88.5 (*central Si*).

Anal. Calcd. [%] for C₄₆H₇₅N₅O₂Si₂: C, 70.27; H, 9.61; N, 8.91. Found [%]: C, 69.13; H, 9.78; N, 8.98.

Figure S53. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si=O(IMe₄) (13a) in C₆D₆ at 300 K.

Figure S54. ¹³C $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si=O(IMe₄) (13a) in C₆D₆ at 300 K.

Figure S55. ²⁹Si $\{^{1}H\}$ NMR spectrum of (IDippN)(^{*t*}Bu₃SiO)Si=O(IMe₄) (13a) in C₆D₆ at 300 K.

1.16 Synthesis and Reactivity of (IDippN)('Bu₃SiO)Si=O(IⁱPr₂Me₂) (13b)

Benzene (5 mL) was added to a mixture of silylene **1** (100 mg, 155 μ mol, 1.0 eq.) and I'Pr₂Me₂ (27.9 mg, 155 μ mol, 1.0 eq.) in a thick-walled, pressurizeable Schlenk flask. The solution was then frozen in liquid nitrogen, degassed and exposed to N₂O (1 bar) at room-temperature. Subsequently, the reaction mixture was stirred for 30 min. Removal of all volatiles *in vacuo* provided the I'Pr₂Me₂-stabilized silanoic ester derivative **13b** as a colorless solid (130 mg, 155 μ mol, quantitative yield). NHC adduct

13b is completely stable as a solid and in solution at ambient and elevated temperatures (\leq 130 °C). <u>*Note:*</u> The observed unusual broad splitting of the NHC wingtip methine protons ($\Delta \delta = 2.74$ ppm) in the ¹H NMR spectrum presumably originates from hydrogen bonding of one isopropyl C–H proton to the oxygen atom of the Si=O bond.

m.p.: 242-243 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 8.53 (sept, ³J = 6.9 Hz, 1H, N_{NHC}C<u>H</u>(CH₃)₂), 7.32– 7.26 (m, 4H, C_{ar}<u>H</u>), 7.07–7.05 (m, 2H, C_{ar}<u>H</u>), 5.89 (s, 2H, NC<u>H</u>), 5.79 (sept, ³J = 6.9 Hz, 1H, N_{NHC}C<u>H</u>(CH₃)₂), 3.54 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 3.10 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 1.71 (br s, 6H, CH(C<u>H</u>₃)₂), 1.63 (s, 3H, C_{NHC}C<u>H</u>₃), 1.60 (s, 3H, C_{NHC}C<u>H</u>₃), 1.40 (d, ³J = 6.9 Hz, 3H, N_{NHC}CH(C<u>*H*</u>₃)₂), 1.34 (d, ³*J* = 6.9 Hz, 3H, N_{NHC}CH(C<u>*H*</u>₃)₂), 1.23 (s, 27H, C(C<u>*H*</u>₃)₃), 1.22 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>*H*</u>₃)₂), 1.16 (d, ³*J* = 6.9 Hz, 6H, CH(C<u>*H*</u>₃)₂), 1.13 (d, ³*J* = 6.9 Hz, 3H, N_{NHC}CH(C<u>*H*</u>₃)₂), 1.05 (br s, 6H, CH(C<u>*H*</u>₃)₂), 0.81 (d, ³*J* = 6.9 Hz, 3H, N_{NHC}CH(C<u>*H*</u>₃)₂). ¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 158.5 (*carbene* C), 149.4 (*o*-C_{ar}), 147.4 (*o*-C_{ar}), 144.5 (NCN), 136.5 (*ipso*-C_{ar}), 129.2 (*p*-C_{ar}H), 126.8 (C_{NHC}CH₃), 124.5 (C_{NHC}CH₃), 123.9 (*m*-C_{ar}H), 115.7 (NCH), 50.4 (N_{NHC}CH(CH₃)₂), 48.7 (N_{NHC}CH(CH₃)₂), 30.9 (C(CH₃)₃), 29.5 (CH(CH₃)₂), 26.0 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 23.6 (CH(CH₃)₂), 23.4 (C(CH₃)₃), 23.1 (CH(CH₃)₂), 22.8 (N_{NHC}CH(CH₃)₂), 22.6 (N_{NHC}CH(CH₃)₂), 21.7 (N_{NHC}CH(CH₃)₂), 10.4 (C_{NHC}CH₃), 10.3 (C_{NHC}CH₃). ²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 1.6 (*Si'*Bu₃), -86.7 (*central Si*).

Anal. Calcd. [%] for C₅₀H₈₃N₅O₂Si₂: C, 71.29; H, 9.93; N, 8.31. Found **[%]**: C, 70.40; H, 9.94; N, 8.26.

Figure S56. ¹H NMR spectrum of (IDippN)('Bu₃SiO)Si=O(I'Pr₂Me₂) (13b) in C₆D₆ at 300 K.

Figure S57. ¹³C{¹H} NMR spectrum of (IDippN)(^{*i*}Bu₃SiO)Si=O(I^{*i*}Pr₂Me₂) (13b) in C₆D₆ at 300 K.

Figure S58. ²⁹Si{¹H} NMR spectrum of (IDippN)(${}^{t}Bu_{3}SiO$)Si=O(I ${}^{t}Pr_{2}Me_{2}$) (13b) in C₆D₆ at 300 K.

Reactivity Investigations

Due to the convenient access to $(IDippN)(^{t}Bu_{3}SiO)Si=O(I^{t}Pr_{2}Me_{2})$ (13b), this NHC-stabilized silanoic ester derivative was subjected to some subsequent reactions.

Ligand Substitution (NHC Exchange Reaction)

A substitution of a weaker σ -donor by a stronger Lewis base is often observed for NHC-supported organosilicon compounds.^[S8] Therefore, a possible ligand exchange reaction was investigated:

А J. Young PTFE valve NMR tube was charged with а mixture of $(IDippN)(^{t}Bu_{3}SiO)Si=O(I^{t}Pr_{2}Me_{2})$ (13b) (20.0 mg, 23.7 µmol, 1.0 eq.) and IMe₄ (2.95 mg, 23.7 µmol, 1.0 eq.) in C₆D₆ (0.5 mL). Since no reaction was detected after 1 d at room-temperature *via* ¹H NMR spectroscopy, we exposed the sample to elevated temperatures. Full conversion of 13b to the IMe₄-stabilized silanoic ester derivative (IDippN)(^{*t*}Bu₃SiO)Si=O(IMe₄) (13a) with concomitant formation of free IⁱPr₂Me₂ was observed after 1 d at 110 °C.

<u>Note:</u> NHC adduct **13a** can be separated from $I^{i}Pr_{2}Me_{2}$ and isolated after removing the solvent *in vacuo* and washing the residue with cold *n*-hexane.

NHC Abstraction Reactions

To prove the intermediary formation of $(IDippN)('Bu_3SiO)Si=O(10a')$ during the synthesis of *trans*-cyclodisiloxane [(IDippN)('Bu_3SiO)Si=O]_2 (10a), we wanted to abstract the NHC and observe subsequent dimerization affording 10a. For this purpose, the reaction of 13b toward common NHC abstraction reagents, such as CO₂ or BR₃ compounds, was studied:

А J. PTFE valve NMR tube with solution of Young was charged а (IDippN)(^{*i*}Bu₃SiO)Si=O(I^{*i*}Pr₂Me₂) (13b) (20.0 mg, 23.7 µmol) in C₆D₆ (0.5 mL), degassed and exposed to CO₂ (1 bar). Immediate full conversion of **13b** to silicon carbonate complex (IDippN)(^tBu₃SiO)Si(O₂C=O) (9) with simultaneous formation of the NHC-CO₂ adduct $I^{i}Pr_{2}Me_{2} \cdot CO_{2}$ was detected by ¹H NMR spectroscopy.

Since NHC abstraction with CO_2 worked, but not the dimerization to **10a**, but the [2+2] cycloaddition reaction providing **9** was observed, we turned to the Lewis acids $B(C_6F_5)_3$ and BPh₃.

Interestingly, addition of an equimolar amount of BCF to **13b** at room temperature resulted in the unselective formation of novel silicon-containing products, but only a conversion of 50% was detected. The addition of a second equivalent of BCF then led to full conversion. The formation of a mixture of products, containing the desired NHC-borane adduct $I'Pr_2Me_2 \cdot B(C_6F_5)_3$ and a compound bearing a Si–F bond, was identified by multinuclear and 2D NMR spectroscopy. However, purification and isolation was not possible so far. The reaction most likely proceeds via NHC-abstraction and simultaneous formation of $I'Pr_2Me_2 \cdot B(C_6F_5)_3$ and the Lewis acid-stabilized silanoic ester derivative (IDippN)($^{t}Bu_3SiO$)Si=O(B(C₆F₅)₃), which undergoes subsequent bond activation and rearrangement reactions.

By-product NHC-borane adduct I^{*i***}Pr₂Me₂·B(C₆F₅)₃:**

For the sake of comparison, the Lewis acid/base-complex $I'Pr_2Me_2 \cdot B(C_6F_5)_3$ was separately synthesized and characterized *via* multinuclear NMR spectroscopy:

 $I^{i}Pr_{2}Me_{2} \cdot B(C_{6}F_{5})_{3}$

C₂₉H₂₀BF₁₅N₂

To a solution of BCF (28.4 mg, 55.5 μ mol, 1.0 eq.) in benzene (0.5 mL) was added a solution of I'Pr₂Me₂ (10.0 mg, 55.5 μ mol, 1.0 eq.) in benzene (0.5 mL). Subsequently, the reaction mixture was stirred for 30 min. Removal of the solvent *in vacuo* afforded the NHC-borane adduct I'Pr₂Me₂·B(C₆F₅)₃ as a colorless solid (38.4 mg, 55.5 μ mol, quantitative yield).

692.28 g/mol <u>Note:</u> Due to coupling with the ¹¹B nucleus (high quadrupole moment and spin ${}^{11}B = 3/2$) and the ¹⁹F atoms, several resonances are broadened in the NMR spectra.

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 4.69 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 1.42 (s, 6H, C<u>H</u>₃), 1.02 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 0.52 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂).

¹¹B{¹H} NMR (128 MHz, C₆D₆, 300 K): δ [ppm] = -16.5.

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 158.6–157.0 (m, <u>carbene C</u>), 150.2–146.6 (m, <u>C</u>ar), 141.1–140.8 (m, <u>C</u>ar), 139.1–138.3 (m, <u>C</u>ar), 137.0–136.2 (m, <u>C</u>ar), 126.6 (<u>C</u>CH₃), 49.9 (<u>C</u>H(CH₃)₂), 49.9 (<u>C</u>H(CH₃)₂), 21.3 (CH(<u>C</u>H₃)₂), 21.3 (CH(<u>C</u>H₃)₂), 20.3 (br s, CH(<u>C</u>H₃)₂), 10.2 (C<u>C</u>H₃).

¹⁹F{¹H} NMR (471 MHz, C₆D₆, 300 K): δ [ppm] = -126.4 to -126.4 (m, 2F, *o*-C_{ar}<u>*F*</u>), -130.3 to -130.4 (m, 2F, *o*-C_{ar}<u>*F*</u>), -132.3 to -132.3 (m, 2F, *o*-C_{ar}<u>*F*</u>), -157.6 (t, ³*J*_{FF} = 21.7 Hz, 1F, *p*-C_{ar}<u>*F*</sub>), -158.2 (t, ³*J*_{FF} = 21.7 Hz, 2F, *p*-C_{ar}<u>*F*</u>), -162.7 (t, ³*J*_{FF} = 21.7 Hz, 2F, *m*-C_{ar}<u>*F*</sub>), -164.4 (dt, ³*J*_{FF} = 21.7 Hz, ⁴*J*_{FF} = 7.8 Hz, 2F, *m*-C_{ar}<u>*F*</sub>), -165.1 to -165.2 (m, 2F, *m*-C_{ar}<u>*F*</sub>).</u></u></u></u>

The spectroscopic data are consistent with those previously reported.^[S9]

Figure S59. ¹H NMR spectrum of $I^iPr_2Me_2 \cdot B(C_6F_5)_3$ in C_6D_6 at 300 K.

Figure S60. ¹¹B $\{^{1}H\}$ NMR spectrum of $I^{i}Pr_{2}Me_{2} \cdot B(C_{6}F_{5})_{3}$ in $C_{6}D_{6}$ at 300 K.

Figure S61. ¹³C{¹H} NMR spectrum of $I^{i}Pr_{2}Me_{2} \cdot B(C_{6}F_{5})_{3}$ in C₆D₆ at 300 K.

Figure S62. ¹⁹F $\{^{1}H\}$ NMR spectrum of I^{*i*}Pr₂Me₂·B(C₆F₅)₃ in C₆D₆ at 300 K.

In contrast to the reaction of **13b** with BCF, treatment of **13b** with BPh₃ resulted in the clean formation of a sole product, but again two equivalents and additionally elevated temperatures were required to achieve full conversion. In analogy to a recent report by Iwamoto *et al.* on the rearrangement of a BCF-stabilized silanone to an aryl(boryloxy)silane, the intermediary formed Lewis acid-stabilized silanoic ester derivative (IDippN)(^{*t*}Bu₃SiO)Si=O(BPh₃) isomerized to aryl(boryloxy)silane **14**.^[S10]

А J. Young PTFE valve NMR tube was charged with a mixture of $(IDippN)(^{t}Bu_{3}SiO)Si=O(I^{t}Pr_{2}Me_{2})$ (13b) (20.0 mg, 23.7 µmol, 1.0 eq.) and BPh₃ (11.5 mg, 47.5 μ mol, 2.0 eq.) in C₆D₆ (0.5 mL). Since no reaction was detected after 1 d at room-temperature *via* ¹H NMR spectroscopy, we exposed the sample to elevated temperatures. Full conversion of 13b to aryl(boryloxy)silane 14 with concomitant formation of IⁱPr₂Me₂·BPh₃ was observed after 2 h at 130 °C.

<u>Note:</u> It was not possible to separate aryl(boryloxy)silane **14** from the I^{*i*}Pr₂Me₂·BPh₃ adduct, however pure **14** can be obtained *via* exposure of the *in-situ* generated (IDippN)(^{*i*}Bu₃SiO)Si(BPh₃) (**12b**) to N₂O (*vide infra*).

1.17 Synthesis of (IDippN)(^tBu₃SiO)Si=O(DMAP) (13c)

Benzene (5 mL) was added to a mixture of silylene **1** (100 mg, 155 μ mol, 1.0 eq.) and DMAP (18.9 mg, 155 μ mol, 1.0 eq.) in a thick-walled, pressurizeable Schlenk flask. The solution was then frozen in liquid nitrogen, degassed and exposed to N₂O (1 bar) at room-temperature. Subsequently, the reaction mixture was stirred for 30 min. Removal of all volatiles *in vacuo* provided the DMAP-stabilized silanoic ester derivative **13c** as a colorless solid (121 mg, 155 μ mol, quantitative yield). DMAP

adduct 13c is completely stable as a solid and in solution at ambient temperature.

<u>Note</u>: At high temperatures isomerization to an unidentified product was observed, but the reaction is extremely slow (only \sim 10% conversion after 10 days at 135 °C) and thus was not further studied. However, ¹H NMR spectroscopy indicated aromatic C–H bond activation of DMAP.

m.p.: 253-254 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 8.37 (d, ³J = 6.8 Hz, 2H, *o*-C_{DMAP}<u>H</u>), 7.20–7.17 (m, 3H, C_{ar}<u>H</u>), 7.15–7.14 (m, 2H, C_{ar}<u>H</u>), 7.14–7.13 (m, 1H, C_{ar}<u>H</u>), 6.48 (d, ³J = 6.8 Hz, 2H, *m*-C_{DMAP}<u>H</u>), 6.02 (s, 2H, NC<u>H</u>), 3.48 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 3.36 (sept, ³J = 6.9 Hz,

2H, C<u>H</u>(CH₃)₂), 2.59 (s, 6H, N(C<u>H</u>₃)₂), 1.55 (d, ${}^{3}J$ = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.52 (d, ${}^{3}J$ = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.25 (d, ${}^{3}J$ = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.17 (s, 27H, C(C<u>H</u>₃)₃).

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 156.0 (*p*- \underline{C}_{DMAP}), 148.2 (*o*- \underline{C}_{ar}), 148.1 (*o*- \underline{C}_{ar}), 145.7 (*o*- \underline{C}_{DMAP} H), 143.2 (N \underline{C} N), 135.7 (*ipso*- \underline{C}_{ar}), 129.2 (*p*- \underline{C}_{ar} H), 124.0 (*m*- \underline{C}_{ar} H), 123.8 (*m*- \underline{C}_{ar} H), 114.5 (N \underline{C} H), 106.3 (*m*- \underline{C}_{DMAP} H), 39.4 (N(\underline{C} H₃)₂), 30.7 (C(\underline{C} H₃)₃), 29.2 (\underline{C} H(CH₃)₂), 29.0 (\underline{C} H(CH₃)₂), 25.1 (CH(\underline{C} H₃)₂), 24.8 (CH(\underline{C} H₃)₂), 24.0 (CH(\underline{C} H₃)₂), 23.5 (CH(\underline{C} H₃)₂), 23.4 (\underline{C} (CH₃)₃).

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 0.6 (*Si*^tBu₃), -87.8 (*central Si*).

Anal. Calcd. [%] for C₄₆H₇₃N₅O₂Si₂: C, 70.45; H, 9.38; N, 8.93. Found [%]: C, 70.14; H, 9.55; N, 8.66.

Figure S63. ¹H NMR spectrum of (IDippN)($^{t}Bu_{3}SiO$)Si=O(DMAP) (**13c**) in C₆D₆ at 300 K. Residual *n*-hexane (from starting material) is labeled with S.

Figure S64. ¹³C{¹H} NMR spectrum of (IDippN)('Bu₃SiO)Si=O(DMAP) (**13c**) in C₆D₆ at 300 K. Residual *n*-hexane is labeled with S.

Figure S65. ²⁹Si{¹H} NMR spectrum of (IDippN)(${}^{t}Bu_{3}SiO$)Si=O(DMAP) (13c) in C₆D₆ at 300 K.

1.18 Synthesis of Aryl(boryloxy)silane 14

Benzene (5 mL) was added to a mixture of silylene **1** (100 mg, 155 μ mol, 1.0 eq.) and BPh₃ (37.5 mg, 155 μ mol, 1.0 eq.) in a thick-walled, pressurizeable Schlenk flask. The resulting reaction mixture was stirred for 30 min. An observed color change to yellow indicated formation of the silylene-borane adduct (IDippN)(^{*t*}Bu₃SiO)Si(BPh₃) (**12b**). The solution

was then frozen in liquid nitrogen, degassed and exposed to N₂O (1 bar) at room-temperature. Subsequently, the reaction mixture was stirred for 30 min. Removal of all volatiles *in vacuo* provided aryl(boryloxy)silane **14** as a colorless solid (140 mg, 155 μ mol, quantitative yield). Compound **14** is completely stable as a solid and in solution at ambient and elevated temperatures (\leq 130 °C).

m.p.: 188-189 °C (decomposition; color change from colorless to yellow).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 7.86–7.84 (m, 4H, C_{ar}<u>H</u>), 7.66–7.64 (m, 2H, C_{ar}<u>H</u>), 7.34–7.23 (m, 8H, C_{ar}<u>H</u>), 7.14–7.12 (m, 2H, C_{ar}<u>H</u>), 7.00–6.99 (m, 3H, C_{ar}<u>H</u>), 6.92–6.90 (m, 2H, C_{ar}<u>H</u>), 6.04 (s, 2H, NC<u>H</u>), 3.29 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 3.19 (sept, ³J = 6.9 Hz, 2H, C<u>H</u>(CH₃)₂), 1.21 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.12 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 1.09 (d, ³J = 6.9 Hz, 6H, CH(C<u>H</u>₃)₂), 0.88 (s, 27H, C(C<u>H</u>₃)₃).

¹¹B{¹H} NMR (128 MHz, C₆D₆, 300 K): In an inexplicable way no ¹¹B NMR resonance could be detected for compound 14.

¹³C{¹H} NMR (126 MHz, C₆D₆, 300 K): δ [ppm] = 147.3 (*o*-<u>*C*</u>_{Dipp}), 147.2 (*o*-<u>*C*_{Dipp}), 144.8 (N<u>*C*</u>N), 139.4 (<u>*C*</u>_{ar}), 137.1 (<u>*C*</u>_{ar}H), 135.7 (<u>*C*</u>_{ar}H), 134.7 (*ipso*-<u>*C*_{Dipp}), 130.4 (<u>*C*</u>_{ar}H), 129.8 (<u>*C*</u>_{ar}H), 128.9 (*p*-<u>*C*_{Dipp}H), 127.3 (<u>*C*</u>_{ar}H), 127.1 (<u>*C*</u>_{ar}H), 124.4 (*m*-<u>*C*_{Dipp}H), 124.3 (*m*-<u>*C*_{Dipp}H), 115.6 (N<u>*C*</u>H), 30.4 (C(<u>*C*</u>H₃)₃), 29.1 (<u>*C*</u>H(CH₃)₂), 29.0 (<u>*C*</u>H(CH₃)₂), 26.1 (CH(<u>*C*</u>H₃)₂), 26.1 (CH(<u>*C*</u>H₃)₂), 22.9 (<u>*C*</u>(CH₃)₃), 22.8 (CH(<u>*C*</u>H₃)₂), 22.3 (CH(<u>*C*</u>H₃)₂).</u></u></u></u></u>

²⁹Si{¹H} NMR (99 MHz, C₆D₆, 300 K): δ [ppm] = 2.5 (*Si*^{*i*}Bu₃), -81.4 (*Si*O).

Anal. Calcd. [%] for C57H78BN3O2Si2: C, 75.71; H, 8.69; N, 4.65. Found **[%]**: C, 75.62; H, 8.63; N, 4.67.

Figure S66. ¹H NMR spectrum of aryl(boryloxy)silane 14 in C₆D₆ at 300 K.

Figure S67. ¹³C{¹H} NMR spectrum of aryl(boryloxy)silane 14 in C₆D₆ at 300 K. Residual *n*-hexane is labeled with S.

Figure S68. ²⁹Si $\{^{1}H\}$ NMR spectrum of aryl(boryloxy)silane 14 in C₆D₆ at 300 K.

Figure S69. ¹H/²⁹Si HMBC NMR spectrum of aryl(boryloxy)silane 14 in C₆D₆ at 300 K.

2. X-ray Crystallographic Data

General Information

The X-ray intensity data of 3 was collected on an X-ray single crystal diffractometer equipped with a CMOS detector (Bruker Photon-100), a rotating anode (Bruker TXS) with MoKa radiation $(\lambda = 0.71073 \text{ Å})$ and a *Helios* mirror optic by using the *APEX III* software package.^[S11] The X-ray intensity data of 6, 7, 9, 11, 12a and 13a were collected on an X-ray single crystal diffractometer equipped with a CMOS detector (Bruker Photon-100), an IMS microsource with MoKα radiation $(\lambda = 0.71073 \text{ Å})$ and a *Helios* mirror optic by using the *APEX III* software package.^[S11] The measurements were performed on single crystals coated with the perfluorinated ether Fomblin[®] Y. The crystals were fixed on the top of a microsampler, transferred to the diffractometer and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[S12] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[S12] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX III software in conjunction with SHELXL-2014^[S13] and SHELXLE.^[S14] All H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and $U_{iso}(H) = 1.2 \cdot U_{eq}(C)$. Full-matrix least-squares refinements were carried out by minimizing $\Delta w (F_o^2 - F_c^2)^2$ with *SHELXL-97*^[S15] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[S16] The images of the crystal structures were generated by Mercury.^[S17] The CCDC numbers CCDC-1983560 (13a), CCDC-1983561 (3), CCDC-1983562 (12a), CCDC-1983563 (11), CCDC-1983564 (7), CCDC-1983565 (6), and CCDC-1983579 (9) contain the supplementary crystallographic data for the structures. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Single Crystal X-ray Structure Determinations

Figure S70. Molecular structure of **3** with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.617(1), Si1–P1 2.256(1), Si1–P2 2.270(1), Si1–N1 1.657(1), N1–C1 1.280(2), Si2–O1 1.639(1), P1–P3 2.241(1), P1–P4 2.227(1), P2–P3 2.222(1), P2–P4 2.360(1), P3–P4 2.162(1); N1–Si1–O1 109.1(1), Si1–N1–C1 149.0(1), Si1–O1–Si2 166.7(1), P1–Si1–P2 86.7(1).

 Table S1. Crystal data and structure refinement for compound 3.

Chemical formula	$C_{39}H_{63}N_3OP_4Si_2$		
Formula weight	770.02 g/mol		
Temperature	123(2) K		
Wavelength	().71073 Å	L .
Crystal size	0.112 × 0).179 × 0.	.242 mm
Crystal habit	clear cc	lorless fr	agment
Crystal system	monoclinic		с
Space group	P 21/c		
Unit cell dimensions	a = 18.2755(11)) Å	$\alpha = 90(5)^{\circ}$
	b = 10.7417(7)	Å	$\beta = 90.804(2)^{\circ}$
	c = 22.0169(15)	ö) Å	$\gamma = 90(5)^{\circ}$
Volume	43	521.7(5) Å	Λ^3
Z	4		
Density (calculated)	1.183 g/cm ³		1 ³
Absorption coefficient	0.263 mm^{-1}		
F(000)	1656		
Diffractometer	Bruker D8 Venture		nture
Radiation source	TXS rotating anode, Mo		
Theta range for data collection	2.23 to 25.35°		
Index ranges	-22<=h<=22, -12<=k<=12, -26<=l<=26		
Reflections collected	79231		
Independent reflections	7897 [R(int) = 0.0367]		
Coverage of independent reflections		99.9%	
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7260 and 0.7452		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7897 / 489 / 39		
Goodness-of-fit on F ²	1.040		
Final R indices	6837 data; I>2σ(I)	R1 =	0.0348, wR2 = 0.0866
	all data	R1 =	0.0427, wR2 = 0.0917
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 + 4.0672P]$		
	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	$0.646 \text{ and } -0.457 \text{ e}\text{\AA}^{-3}$		
R.M.S. deviation from mean	$0.052 \text{ e}\text{\AA}^{-3}$		

Figure S71. Molecular structure of **6** with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.618(3), Si1–N1 1.623(2), Si1–N4 1.573(2), N1–C1 1.275(4), Si2–O1 1.651(5), N4–Si3 1.693(2); N1–Si1–O1 107.0(1), N1–Si1–N4 130.7(1), N4–Si1–O1 122.2(1), Si1–N1–C1 153.9(2), Si1–O1–Si2 143.6(3), Si1–N4–Si3 139.4(1).

 Table S2. Crystal data and structure refinement for compound 6.

Chemical formula	$C_{48}H_{84}N_4OSi_3$		
Formula weight	817.48 g/mol		
Temperature	100(2) K		
Wavelength	(0.71073	Å
Crystal size	0.070 imes 0	0.181 × 0	.290 mm
Crystal habit	clear co	lorless fi	ragment
Crystal system	monoclinic		ic
Space group	P 21/n		
Unit cell dimensions	a = 13.2094(8)	Å	$\alpha = 90^{\circ}$
	b = 18.7067(12	2) Å	$\beta = 91.315(2)^{\circ}$
	c = 20.3570(13)	8) Å	$\gamma = 90^{\circ}$
Volume	50	5029.0(5) Å ³	
Z	4		
Density (calculated)	1.080 g/cm ³		n ³
Absorption coefficient	0.131 mm ⁻¹		
F(000)	1800		
Diffractometer	Bruker D8 Venture Duo IMS		
Radiation source	IMS microsource, Mo		
Theta range for data collection	2.18 to 25.35°		
Index ranges	-15<=h<=15, -22<=k<=22, -24<=l<=24		
Reflections collected	182252		
Independent reflections	9197 [R(int) = 0.0728]		
Coverage of independent reflections	99.8%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7209 and 0.7450		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	9197 / 818 / 549		
Goodness-of-fit on F ²	1.125		
Final R indices	8326 data; I>2σ(I)	R1 =	0.0662, wR2 = 0.1423
	all data	R1 =	0.0730, wR2 = 0.1462
Weighting scheme	w = $1/[\sigma^2(F_o^2) + (0.0414P)^2 + 5.7268P]$ where P = $(F_o^2 + 2F_c^2)/3$		$(4P)^2 + 5.7268P$]
			$(2F_c^2)/3$
Largest diff. peak and hole	0.379 and -0.381 eÅ ⁻³		
R.M.S. deviation from mean	$0.044 \text{ e}\text{\AA}^{-3}$		

Figure S72. Molecular structure of **7** with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.613(1), Si1–O2 1.699(1), Si1–N1 1.620(1), Si1–N4 1.764(2), N1–C1 1.286(2), Si2–N4 1.787(2), Si3–O1 1.656(1), N4–C49 1.399(3), O2–C49 1.387(2), C49–O3 1.195(2); N1–Si1–O1 112.7(1), Si1–N1–C1 154.8(1), Si1–O1–Si3 152.5(1), O2–Si1–N4 78.6(1), Si1–O2–C49 90.2(1), Si1–N4–C49 87.2(1), O2–C49–N4 103.9(2).

 Table S3. Crystal data and structure refinement for compound 7.

Chemical formula	$C_{49}H_{84}N_4O_3Si_3$		
Formula weight	861.49 g/mol		
Temperature	100(2) K		
Wavelength	(0.71073 Å	
Crystal size	0.236×0	0.297 × 0.373 mm	
Crystal habit	clear co	lorless fragment	
Crystal system	monoclinic		
Space group		P 21/n	
Unit cell dimensions	a = 13.5215(6)	Å $\alpha = 90^{\circ}$	
	b = 17.5358(8)	$β = 93.012(2)^{\circ}$	
	c = 22.5862(10)	$)) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	53	348.0(4) Å ³	
Ζ	4		
Density (calculated)	1.070 g/cm^3		
Absorption coefficient	0.129 mm^{-1}		
F(000)	1888		
Diffractometer	Bruker D8 Venture Duo IMS		
Radiation source	IMS microsource, Mo		
Theta range for data collection	2.14 to 25.35°		
Index ranges	-16<=h<=16, -21<=k<=21, -27<=l<=27		
Reflections collected	102378		
Independent reflections	9793 [R(int) = 0.0444]		
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.6620 and 0.7453		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014 (Sheldrick, 2014)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	9197 / 654 / 102		
Goodness-of-fit on F ²	1.055		
Final R indices	8633 data; I>2σ(I)	R1 = 0.0452, wR2 = 0.1149	
	all data	R1 = 0.0523, wR2 = 0.1208	
Weighting scheme	$w = 1/[\sigma^2(F_o^2)]$	$+(0.0530P)^2+4.5428P]$	
	where I	$P = (F_o^2 + 2F_c^2)/3$	
Largest diff. peak and hole	1.091 and -0.396 eÅ ⁻³		
R.M.S. deviation from mean	0.046 eÅ ⁻³		

Figure S73. Molecular structure of **9** with ellipsoids set at 50% probability (one out of two independent molecules in the asymmetric unit). Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.712(2), Si1–O2 1.712(2), Si1–O4 1.585(2), Si1–N1 1.609(2), N1–C14 1.299(3), Si2–O4 1.648(2), O1–C1 1.360(3), O2–C1 1.362(3), C1–O3 1.196(3); N1–Si1–O4 112.5(1), O1–Si1–O2 78.0(1), Si1–N1–C14 150.0(2), Si1–O4–Si2 165.1(1), O1–C1–O2 104.6(2).

Table S4. Crystal data and structure refinement for compound 9.

Chemical formula	$C_{40}H_{63}N_3O_4Si_2$	
Formula weight	706.13 g/mol	
Temperature	100(2) K	
Wavelength	0.	.71073 Å
Crystal size	0.466 × 0	.495 × 0.585 mm
Crystal habit	clear col	orless fragment
Crystal system	orthorhombic	
Space group	P c a 21	
Unit cell dimensions	a = 16.804(2) Å	$\alpha = 90^{\circ}$
	b = 14.1855(18) Å $\beta = 90^{\circ}$
	c = 34.372(4) Å	$\gamma = 90^{\circ}$
Volume	819	93.4(17) Å ³
Z	8	
Density (calculated)	1.145 g/cm^3	
Absorption coefficient	0.128 mm ⁻¹	
F(000)	3072	
Diffractometer	Bruker D8 Venture Duo IMS	
Radiation source	IMS microsource, Mo	
Theta range for data collection	1.97 to 25.70°	
Index ranges	-20<=h<=20, -17<=k<=17, -41<=l<=41	
Reflections collected	323173	
Independent reflections	15568 [R(int) = 0.0428]	
Coverage of independent reflections	99.9%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7017 and 0.7460	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014 (Sheldrick, 2014)	
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$	
Data / restraints / parameters	15568 / 918 / 1	
Goodness-of-fit on F ²	1.084	
Final R indices	15207 data; I>2σ(I)	R1 = 0.0290, wR2 = 0.0722
	all data	R1 = 0.0301, wR2 = 0.0729
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 2.9609P]$	
	where P	$=(F_o^2+2F_c^2)/3$
Largest diff. peak and hole	0.258 and -0.220 eÅ ⁻³	
R.M.S. deviation from mean	$0.035 \text{ e}\text{\AA}^{-3}$	

Figure S74. Molecular structure of **11** with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.623(2), Si1–O2 1.601(2), Si1–O3 1.659(2), Si1–O3* 1.673(2), N1–O1 1.449(3), N1–C1 1.305(2), Si2–O2 1.682(2); O1–Si1–O2 114.5(1), O3–Si1–O3* 88.8(1), Si1–O2–Si2 146.7(1), Si1–O1–N1 125.3(1), O1–N1–C1 106.7(1).

 Table S5. Crystal data and structure refinement for compound 11.

$C_{78}H_{126}N_6O_6Si_4$		
1356.24 g/mol		
100(2) K		
(0.71073 Å	
0.331 × 0	0.394 × 0.411 mm	
clear co	olorless fragment	
monoclinic		
C 2/c		
a = 26.09(2) Å	$\alpha = 90^{\circ}$	
b = 13.509(11)) Å $\beta = 107.52(4)^{\circ}$	
c = 27.21(3) Å	$\gamma = 90^{\circ}$	
9	148(14) Å ³	
4		
0.985 g/cm ³		
0.111 mm ⁻¹		
2960		
Bruker D8 Venture Duo IMS		
IMS microsource, Mo		
2.49 to 25.39°		
-31<=h<=31, -16<=k<=16, -32<=l<=32		
156212		
8320 [R(int) = 0.0668]		
98.9%		
Multi-Scan		
0.6421 and 0.7831		
Full-matrix least-squares on F ²		
SHELXL-2016/6 (Sheldrick, 2016)		
$\Sigma \mathrm{w}(\mathrm{F_o^2}-\mathrm{F_c^2})^2$		
8320 / 0 / 441		
1.054		
7002 data; I>2σ(I)	R1 = 0.0484, wR2 = 0.1120	
all data	R1 = 0.0606, wR2 = 0.1177	
$w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 14.5084P]$		
where $P = (F_o^2 + 2F_c^2)/3$		
0.387 and $-0.340 \text{ e}\text{\AA}^{-3}$		
0.045 eÅ ⁻³		
	C_{78} 13 (0.331×0 clear co r $a = 26.09(2) Åb = 13.509(11)c = 27.21(3) Å900Bruker D&IMS n2.4-31 <=h <= 31, -18320 [M0.64Full-matrixSHELXL-20\Sigma \propto8327002 data; I > 2\sigma(I)all dataw = 1/[\sigma^2(F_0^2) - 1]where I0.3870$	

Figure S75. Molecular structure of **12a** with ellipsoids set at 50% probability. Hydrogen atoms and cocrystallized toluene are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–B1 2.086(3), Si1–O1 1.598(2), Si1–N1 1.621(2), N1–C1 1.296(4), Si2–O1 1.676(2); B1–Si1–O1 116.5(1), B1–Si1–N1 128.9(1) N1–Si1–O1 114.2(1), Si1–N1–C1 150.8(3), Si1–O1–Si2 164.7(2).

Table S6. Crystal data and structure refinement for compound 12a.

Chemical formula	$C_{57}H_{63}BF_{15}N_3OSi_2$		
Formula weight	1158.11 g/mol		
Temperature		100(2) K	
Wavelength	0	.71073 Å	
Crystal size	0.184×0	$0.200 \times 0.254 \text{ mm}$	
Crystal habit	clear co	lorless fragment	
Crystal system	h	exagonal	
Space group	P 65		
Unit cell dimensions	a = 21.6490(15) Å o		$\alpha = 90^{\circ}$
	b = 21.6490(15)) Å	$\beta = 90^{\circ}$
	c = 24.0739(18)) Å	$\gamma = 120^{\circ}$
Volume	977	9771.3(18) Å ³	
Ζ	6		
Density (calculated)	1.275 g/cm ³		
Absorption coefficient	0.139 mm ⁻¹		
F(000)	3912		
Diffractometer	Bruker D8 Venture Duo IMS		
Radiation source	IMS microsource, Mo		
Theta range for data collection	1.88 to 25.68°		
Index ranges	-26<=h<=26, -26<=k<=26, -29<=l<=29		
Reflections collected	482120		
Independent reflections	12388 [R(int) = 0.0715]		
Coverage of independent reflections	100%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.8224 and 0.7438		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/5 (Sheldrick, 2016)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	12388 / 911 / 208		
Goodness-of-fit on F ²	1.096		
Final R indices	12202 data; I>2σ(I)	R1 = 0.0387, v	wR2 = 0.0983
	all data	R1 = 0.0393, v	wR2 = 0.0987
Weighting scheme	w = $1/[\sigma^2(F_o^2) + (0.0513P)^2 + 4.9609P]$ where P = $(F_o^2 + 2F_c^2)/3$		609P]
Largest diff. peak and hole	0.363 and -0.315 eÅ ⁻³		
R.M.S. deviation from mean	0.045 eÅ ⁻³		

_

Figure S76. Molecular structure of **13a** with ellipsoids set at 50% probability. Hydrogen atoms, except for H31B involved in hydrogen bonding (visualized by the dashed line), and cocrystallized toluene are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1–O1 1.554(2), Si1–O2 1.653(2), Si1–C28 1.935(3), Si1–N1 1.684(2), N1–C1 1.271(3), Si2–O2 1.626(2); N1–Si1–O2 104.2(1), O1–Si1–O2 115.5(1), Si1–N1–C1 146.1(2), Si1–O2–Si2 151.6(1).
Table S7. Crystal data and structure refinement for compound 13a.

Chemical formula	$C_{46}H_{75}N_5O_2Si_2$		
Formula weight	78	786.31 g/mol	
Temperature		100(2) K	
Wavelength	C	0.71073 Å	
Crystal size	0.103 × 0	$0.103 \times 0.127 \times 0.274 \text{ mm}$	
Crystal habit	clear co	clear colorless fragment	
Crystal system	orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 12.3466(7)	Å $\alpha = 90^{\circ}$	
	b = 16.0952(9)	Å $\beta = 90^{\circ}$	
	c = 26.4133(15)	5) Å $\gamma = 90^{\circ}$	
Volume	52	248.9(5) Å ³	
Z	4		
Density (calculated)	1.112 g/cm ³		
Absorption coefficient	0	.110 mm ⁻¹	
F(000)	1920		
Diffractometer	Bruker D8 Venture Duo IMS		
Radiation source	IMS microsource, Mo		
Theta range for data collection	2.217 to 25.349°		
Index ranges	-14<=h<=14, -19<=k<=19, -31<=l<=31		
Reflections collected	55732		
Independent reflections	9603 [R(int) = 0.0416]		
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7153 and 0.7450		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	9603 / 581 / 0		
Goodness-of-fit on F ²	1.066		
Final R indices	8376 data; I>2σ(I)	R1 = 0.0366, wR2 = 0.0814	
	all data	R1 = 0.0493, wR2 = 0.0896	
Weighting scheme	$w = 1/[\sigma^2(F_o^2) +$	$+(0.0386P)^2+1.2905P]$	
	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.210 and -0.218 eÅ ⁻³		
R.M.S. deviation from mean	$0.041 \text{ e}\text{\AA}^{-3}$		

Preliminary Measurement Results as Structural Evidence

For the following two cases the crystal quality was unfortunately not sufficient for a complete refinement process and subsequent analysis of the structural data. Nevertheless, the preliminary structures obtained serve as evidence for the respective molecular structures in the solid state.

Figure S77. Molecular structure of *trans*-Cyclodisiloxane $[(IDippN)('Bu_3SiO)Si=O]_2$ (**10a**) in the ball-and-stick representation. Hydrogen atoms are omitted for clarity.

Fable S8. Structur	al information	for compound	10a.
--------------------	----------------	--------------	------

Chemical formula	$C_{78}H_{126}N_6O_4Si_4$	
Formula weight	1324.24 g/mol	
Crystal habit	clear colorless fragment	
Crystal system	triclinic	
Space group	P 1	
Unit cell dimensions	a = 14.221(8) Å	$\alpha = 89.052(6)^{\circ}$
	b = 14.221(8) Å	$\beta = 89.052(6)^{\circ}$
	c = 45.50(2) Å	$\gamma = 68.589^{\circ}$
Volume	8563.96 Å ³	

Figure S78. Molecular structure of Silicon Diselenide [(IDippN)('Bu₃SiO)Si=Se]₂ (**10b**) in the ball-and-stick representation. Hydrogen atoms are omitted for clarity.

Table S9.	. Structural	information	for	compound	10b.
-----------	--------------	-------------	-----	----------	------

Chemical formula	$C_{78}H_{126}N_6O_2Se_2Si_4$		
Formula weight	1450.17 g/mol		
Crystal habit	clear colorless fragment		
Crystal system	triclinic		
Space group	P 1		
Unit cell dimensions	a = 13.118(13) Å	$\alpha = 72.28(3)^{\circ}$	
	b = 16.152(16) Å	$\beta = 75.65(3)^{\circ}$	
	c = 20.61(2) Å	$\gamma = 76.26(3)^{\circ}$	
Volume	3967.27 Å ³		

3. References

- [S1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176-2179.
- [S2] D. Wendel, D. Reiter, A. Porzelt, P. J. Altmann, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 17193-17198.
- [S3] N. Kuhn, T. Kratz, *Synthesis* **1993**, 561-562.
- [S4] N. Wiberg, C.-K. Kim, Eur. J. Inorg. Chem. 1986, 119, 2980-2994.
- [S5] Y. Xiong, S. Yao, M. Brym, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4511-4513.

- [S6] T. J. Hadlington, J. A. B. Abdalla, R. Tirfoin, S. Aldridge, C. Jones, *Chem. Commun.* 2016, 52, 1717-1720.
- [S7] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- [S8] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842.
- [S9] J. Chen, E. Y.-X. Chen, *Isr. J. Chem.* 2015, 55, 216-225.
- [S10] R. Kobayashi, S. Ishida, T. Iwamoto, Angew. Chem. Int. Ed. 2019, 58, 9425-9428.
- [S11] *APEX suite of crystallographic software*, APEX 3 version 2015.5-2; Bruker AXS Inc.: Madison, Wisconsin, USA, **2015**.
- [S12] SAINT, Version 7.56a and SADABS Version 2008/1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
- [S13] G. M. Sheldrick, SHELXL-2014, University of Göttingen, Göttingen, Germany, 2014.
- [S14] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.
- [S15] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1998.
- [S16] A. J. C. Wilson, International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
- [S17] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst. 2020, 53, 226-235.