Copper(II) L/D-valine-(1,10-phen) Complexes Target Telomeric G-quadruplex Motifs

 and Promote Site-Specific DNA Cleavage and Cellular CytotoxicityFarukh Arjmand, ${ }^{\text {a,* }}$ Surbhi Sharma, ${ }^{\text {a }}$ Sabiha Parveen, ${ }^{\text {a }}$ Loic Toupet, ${ }^{\text {b }}$ Zhen Yu, ${ }^{\text {c }}$ and J. A. Cowan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
b Institut de Physique de sRennes, UMR 625, Université de Rennes 1, Campus de Beaulieu Bat. 11 A, 263 av. Général Leclerc, 35042 Rennes Cedex, France.
c Department of Chemistry and Biochemistry, The Ohio State University 100 West $18^{\text {th }}$ Avenue, Columbus, OH 43210 (USA).

* Corresponding Author: Farukh Arjmand, E-mail: farukh.arjmand18@gmail.com Tel:+91 5712703893.

Table S1. Selected bond lengths for complex 1a.

Bond lengths	$\mathbf{(\AA)}$
$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.010
$\mathrm{Cu}(1)-\mathrm{N}(3)$	1.989
$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.019
$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.010
$\mathrm{Cu}(1)-\mathrm{O}(1)$	1.930
$\mathrm{Cu}(1)-\mathrm{O}(1 \mathrm{~W})$	2.246

Table S2. Selected bond angles for complex 1a.

Bond Angle	[deg]
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	81.79
$\mathrm{~N}(3)-\mathrm{Cu}(1)-\mathrm{O}(1)$	84.01
$\mathrm{~N}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	99.08
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	92.77
$\mathrm{~N}(1)-\mathrm{Cu}(1)-\mathrm{O}(1 \mathrm{~W})$	96.63

Table S3. Selected bond lengths for complex 1b.

Bond lengths	$\mathbf{(\AA)}$
$\mathrm{Cu}(1)-\mathrm{O}(1 \mathrm{~A})$	$1.937(3)$
$\mathrm{Cu}(1)-\mathrm{N}(3 \mathrm{~A})$	$1.979(4)$
$\mathrm{Cu}(1)-\mathrm{N}(1 \mathrm{~A})$	$1.995(4)$

$\mathrm{Cu}(1)-\mathrm{N}(2 \mathrm{~A})$	$2.018(4)$
$\mathrm{Cu}(1)-\mathrm{O}(3 \mathrm{~A})$	$2.307(5)$
$\mathrm{O}(3 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$	$1.253(6)$
$\mathrm{O}(4 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$	$1.249(7)$
$\mathrm{O}(5 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$	$1.244(7)$
$\mathrm{Cu}(2)-\mathrm{O}(1 \mathrm{~B})$	$1.936(3)$
$\mathrm{Cu}(2)-\mathrm{N}(3 \mathrm{~B})$	$1.984(4)$
$\mathrm{Cu}(2)-\mathrm{N}(1 \mathrm{~B})$	$2.006(4)$
$\mathrm{Cu}(2)-\mathrm{N}(2 \mathrm{~B})$	$2.020(4)$
$\mathrm{Cu}(2)-\mathrm{O}(3 \mathrm{~B})$	$2.304(4)$
$\mathrm{O}(3 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$1.252(6)$
$\mathrm{O}(4 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$1.247(7)$
$\mathrm{O}(5 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$1.243(6)$

Table S4. Selected bond angles for complex 1b.

Bond Angle	$[$ deg $]$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(3 \mathrm{~A})$	$84.59(17)$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(1 \mathrm{~A})$	$92.57(16)$
$\mathrm{N}(3 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(1 \mathrm{~A})$	$173.5(2)$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(2 \mathrm{~A})$	$165.44(19)$
$\mathrm{N}(3 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(2 \mathrm{~A})$	$98.75(17)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(2 \mathrm{~A})$	$82.57(17)$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(3 A)$	$95.33(18)$
$\mathrm{N}(3 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(3 A)$	$99.13(18)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(3 A)$	$86.99(17)$
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(3 A)$	$98.11(17)$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(3 \mathrm{~B})$	$84.13(15)$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(1 \mathrm{~B})$	$92.76(16)$
$\mathrm{N}(3 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(1 \mathrm{~B})$	$175.63(19)$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(2 \mathrm{~B})$	$165.54(19)$
$\mathrm{N}(3 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(2 \mathrm{~B})$	$100.03(16)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{N}(2 \mathrm{~B})$	$82.25(17)$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{O}(3 \mathrm{~B})$	$94.14(19)$
$\mathrm{N}(3 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{O}(3 \mathrm{~B})$	$97.09(16)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{O}(3 \mathrm{~B})$	$86.18(16)$
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Cu}(2)-\mathrm{O}(3 \mathrm{~B})$	$99.03(17)$

Table S5. Non-covalent interaction of complex 1b with ct-DNA.

Name	Distance $\mathbf{(\AA)}$	Category	Type
Complex 1b:N4A - B:DA17:OP1	4.61	Electrostatic	Attractive Charge
Complex 1b:H11 - A:DC11:O2	2.62	Hydrogen Bond	Carbon Hydrogen Bond
A:DG12:OP1 - Complex 1b	4.11	Electrostatic	Pi-Anion
B:DG14 - Complex 1b:C16	5.28	Hydrophobic	Pi-Alkyl

Fig. S1 ESI-MS spectrum of complex 1a.

Fig. S2 ESI-MS spectrum of complex $\mathbf{1 b}$.

Fig. S3(i) X-band EPR spectrum of complex 1a at RT.

Fig. S3(ii) X-band EPR spectrum of complex 1b at RT.

In vitro binding studies with ct-DNA

The comparative spectra of solutions of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$, in the absence and presence of increasing concentrations of ct-DNA, were measured to obtain evidence for a probable binding mode. As shown in Fig. S4, following addition of increasing aliquots of ctDNA $\left(0.00-0.5 \times 10^{-4} \mathrm{M}\right)$ to a fixed concentration of complexes $\mathbf{1 a}$ and $\mathbf{1 b}\left(0.2 \times 10^{-4} \mathrm{M}\right)$, a 'hypochromic effect' was observed in the intra ligand band at 270 nm with a hypsochromic (blue) shift of 2 nm indicating that both complexes interacted with ct-DNA through intercalation mode of binding. The observed hypsochromic shift could be attributed to interaction of a π^{*} orbital of the intercalating ligand (1,10-phen) with a π orbital of the nucleic acid base pair. The differences in binding of L- and D-enantiomers revealed complex 1a i.e. L-enantiomer exhibited better binding affinity than D-enantiomer.

Further, quantification of the binding strength of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$ towards ctDNA was ascertained by the intrinsic binding constant, K_{b} values were calculated by using the Wolfe-Shimer equation (1)

$$
[\mathrm{DNA}] / \varepsilon_{\mathrm{a}}-\varepsilon_{\mathrm{f}}=[\mathrm{DNA}] / \varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}+1 / K_{\mathrm{b}}\left|\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right|(\mathbf{1})
$$

Where, [DNA] is ct-DNA concentration, and $\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{f}}$ and ε_{b} are the apparent $\left(A_{\mathrm{abs}} /[\mathrm{Cu}(\mathrm{II})\right.$ complex]), and free and bound complex extinction coefficients, respectively. A plot of [DNA/] $/\left(\varepsilon_{\mathrm{a}}-\varepsilon_{\mathrm{f}}\right) v s$. [DNA] yields a slope of $1 /\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)$ and an intercept of $1 /\left[K_{\mathrm{b}}\left(\varepsilon_{\mathrm{b}}-\varepsilon_{\mathrm{f}}\right)\right]$, and K_{b} values are obtained from the ratio of the slope to the intercept. The intrinsic binding constant K_{b} values for the complexes $\mathbf{1 a}$ and $\mathbf{1 b}$ were found to $2.48(\pm 0.11) \times 10^{4}$ and $1.39(\pm 0.08) \times 10^{4}$ M^{-1}, respectively.

Fig. S4 Absorption spectra of complexes $\mathbf{1 a}$ and $\mathbf{1 b}\left(0.2 \times 10^{-4} \mathrm{M}\right)$ in the absence and presence of increasing amounts of ct-DNA $\left(0.0-0.5 \times 10^{-4} \mathrm{M}\right)$ in 5.0 mM Tris- HCl buffer at pH 7.2 . Inset: Plots of [DNA]/ $\varepsilon_{b}\left(\mathrm{M}^{2} \mathrm{~cm}\right) v s$. [DNA] for titration with complexes $\mathbf{1 a}$ and $\mathbf{1 b}$.

Fig. S5 Effect of increasing amounts of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$ on the relative viscosity $\left(\eta / \eta_{0}\right)$ of DNA in Tris-HCl buffer (pH 7.2).

Fig. S6 Cleavage of supercoiled pUC19 DNA $(50 \mu \mathrm{M})$ by complex $\mathbf{1 a}(1 \mu \mathrm{M})$ and $\mathbf{1 b}(1$ $\mu \mathrm{M}$) in a buffer containing 10 mM tris- $\mathrm{HCl}, \mathrm{pH}=7.4$ at $37^{\circ} \mathrm{C}$, for 30 min ., Lane (1) DNA starting material; (2) DNA spontaneous reaction $50 \mu \mathrm{M}$; (3) asc ; (4) asc $+\mathrm{H}_{2} \mathrm{O}_{2}$ (5) DNA +

1a; (6) DNA $+\mathbf{1 b}$ (7) DNA + asc $+\mathrm{H}_{2} \mathrm{O}_{2}+\mathbf{1 a}$ (8) DNA + asc $+\mathrm{H}_{2} \mathrm{O}_{2}+\mathbf{1 b}$; [asc] $=1 \mathrm{mM}$, $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=1 \mathrm{mM}$

Fig. S7 Top view of the docked pose of complex $\mathbf{1 b}$ with parallel quadruplex G4 structure (PDB ID: 1KF1).

