Electronic Supplementary Information (ESI)

Zn(II), Cd(II) and Hg(II) saccharinate complexes with 2,6-bis(2benzimidazolyI)pyridine as promising anticancer agents in breast and lung cancer cell lines via ROS-induced apoptosis

Ceyda Icsel, ^a Veysel T. Yilmaz, *^a Seyma Aydinlik ^b and Muhittin Aygun ^c

^aDepartment of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey.

^bTUBITAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey

^cDepartment of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey

Corresponding Author:

Prof. Dr. Veysel T. Yilmaz Department of Chemistry Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa, Turkey

E-mail: vtyilmaz@uludag.edu.tr

	Zn	Cd	Hg
empirical formula	$C_{52}H_{38}N_{12}O_8S_2Zn$	$C_{33}H_{21}CdN_7O_6S_2$	$C_{33}H_{21}HgN_7O_6S_2$
formula weight	1088.43	788.09	876.28
crystal system	triclinic	monoclinic	monoclinic
space group	PĪ	I2/a	I2/a
<i>a,</i> Å	10.1938(5)	10.1600(7)	10.2014(6)
<i>b,</i> Å	12.5434(9)	14.1135(9)	14.2651(7)
<i>c,</i> Å	19.5581(14)	21.9573(14)	21.9691(12)
α, deg	88.570(6)	90	90
<i>θ,</i> deg	82.144(5)	97.560(6)	97.393(6)
γ, deg	76.167(5)	90	90
<i>V</i> , Å ³	2405.4(3)	3121.2(4)	3170.5(3)
<i>Т,</i> К	150(10)	293(2)	293(2)
Ζ	2	4	4
$ ho_{ m calc}$ (g cm ⁻³)	1.503	1.677	1.836
μ (mm ⁻¹)	0.669	0.893	5.045
F(000)	1120	1584	1712
θ(°)	3.042-25.681	2.946-25.678	3.148-25.676
collected refls	13899	5916	5075
data/ parameters	9069 /692	2968/227	3001/223
goodness-of-fit	1.011	1.074	1.031
$R_1[l>2\sigma]$	0.0472	0.0349	0.0337
wR ₂	0.1000	0.0702	0.0686

Table S1 Crystallographic data and structure refinement for the metal complexes.

	Zn	Cd	Hg
M1-N1	2.208(2)	2.359(4)	2.420(5)
M1-N2	2.139(2)	2.390(2)	2.437(3)
M1-N3	2.146(2)	-	-
M1-N4	-	2.222(3)	2.215(4)
M1-N6	2.151(3)	-	-
M1-N7	2.136(2)	-	-
M1-N8	2.181(3)	-	-
N1-M1-N2	74.01(8)	69.16(6)	68.02(9)
N1-M1-N3	149.08(9)	-	-
N1-M1-N4	-	117.01(8)	118.69(11)
N2-M1-N4	-	104.39(9)	104.34(14)
N2-M1-N2 ⁱ	-	138.32(13)	136.04(18)
N2-M1-N4 ⁱ	-	94.28(9)	96.41(13)
N4-Cd1-N4 ⁱ	-	125.97(15)	122.6(2)
N1-M1-N6	96.67(9)	-	-
N1-M1-N7	93.66(8)	-	-
N1-M1-N8	89.12(9)	-	-
N2-M1-N3	75.16(8)	-	-
N2-M1-N6	114.40(9)	-	-
N2-M1-N7	164.78(9)	-	-
N2-M1-N8	95.91(9)	-	-
N3-Zn1-N6	93.85(9)	-	-
N3-Zn1-N7	117.16(8)	-	-
N3-Zn1-N8	96.31(9)	-	-
N6-Zn1-N7	75.24(9)	-	-
N6-Zn1-N8	149.59(9)	-	-
N7-Zn1-N8	74.61(9)	-	-

 Table S2 Selected bond lengths (Å) and angles (°) for the metal complexes.

Symmetry code (*i*): -*x*+1/2, *y*, -*z*+1.

_		Hydrogen bonds		Binding free energy			
	(D–H)	(H…A)	(H…A, Å)	(kJ mol ⁻¹)			
		PDB : 1BNA					
Zn	bzimpy-N5H	DA5:OP2	2.42	-34.73			
	bzimpy-N10H	DT19:04	2.51				
	DG4: OP2 electrostatic	π (bzimpy)	3.69				
Cd	DG4:H21	O2-sac (sulfonyl)	2.03	-37.66			
	DC23:H4'	O1-sac (carbonyl)	2.37				
	sac (sulfonyl-S) <i>electrostatic</i>	DA6: OP1	3.81				
Hg	DG4:H21	O3-sac (sulfonyl)	1.97	-38.49			
	DC23:H4'	O1-sac (carbonyl)	2.36				
	DA5:H5'2	O2-sac (sulfonyl)	2.53				
	sac (sulfonyl-S) electrostatic	DA6: OP1	3.84				
PDB : 3CO3							
Zn	bzimpy-N10H	DG21:06	2.12	-33.89			
	bzimpy-N4H	DC2:OP2	2.61				
	DA20: OP2 electrostatic	π (bzimpy)	3.89				
Cd	DC11:H5'1	O2-sac (sulfonyl)	2.10	-37.24			
	DA17:H4'	O2-sac (sulfonyl)	2.59				
	bzimpy-N3H	DT10:02	2.65				
	bzimpy-N3H	DC12:05'	2.88				
	DC12:OP1 electrostatic	π (bzimpy)	3.32				
	sac (sulfonyl-S) electrostatic	DC12: OP1	3.84				
	DA17:OP1 electrostatic	π (sac)	3.88				
Hg	DG16:H21	O3-sac (sulfonyl)	2.19	-38.07			
	DC11:H5'1	O1-sac (carbonyl)	2.43				
	DC11:H5'2	O2-sac (sulfonyl)	2.64				
	DC12:OP1 electrostatic	π (sac)	3.64				
	sac (sulfonyl-S) electrostatic	DC12:OP1	3.96				
		PDB : 1LU5					
Zn	bzimpy-N10H	DG6:OP2	2.01	-37.66			
	bzimpy-N4H	DA15:N7	2.50				
	DA15: OP2 electrostatic	π (bzimpy)	3.35				
	DT5: OP2 electrostatic	π (bzimpy)	3.66				
Cd	DG16:H21	O2-sac (sulfonyl)	2.28	-37.24			
	DA17:H5'2	O3-sac (sulfonyl)	2.71				
	DA17:H5'2	O1-sac (carbonyl)	2.75				
Hg	DG16:H21	O3-sac (sulfonyl)	2.06	-38.49			
	DC11:H4'1	O3-sac (sulfonyl)	2.58				
	DT10:H1'	O3-sac (sulfonyl)	2.80				
	DT10:H1'	O2-sac (sulfonyl)	2.84				
	DC11:OP1 electrostatic	π (sac)	3.92				

Table S3 Intermolecular interactions of the metal complexes with DNA obtained frommolecular docking models.

Fig. S1 UV-Vis spectra of the metal complexes (10 μ M) showing their time-dependent stability in DMSO, saline and cell culture medium.

Fig. S2 IR spectra of the metal complexes.

Fig. S3a 1 H- (a) and 13 C- (b) spectra of Zn.

Fig. S3b 1 H- (a) and 13 C- (b) spectra of Cd.

Fig. S3c 1 H- (a) and 13 C- (b) spectra of Hg.

Fig. S4 ESI-MS spectra of the metal complexes.

Fig. S5 The dose-response graphics for the metal complexes, bzimpy, Na(sac) and cisplatin obtained from ATP assay, showing the effect of the complexes on the growth of the cell lines after 48 h of treatment. Results are represented as mean \pm standard deviation (n = 3). The asterisks denote statistically significant differences in comparison with the control group (*p < 0.05, **p < 0.01 and ***p < 0.001).

Fig. S6 DNA docking models of the metal complexes with 1BNA, 3CO3 and 1LU5.

Fig. S7 Morphological changes in the nuclei of A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cells were stained with Hoechst 33342/PI followed by detection using a fluorescence microscope. Magnification: 20×.

Fig. S8 Annexin-V/7-AAD staining assay. A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.

Fig. S9 Caspase 3/7 activity in A549 and MCF-7 cells treated with IC₉₀ doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.

Fig. S10 Cell cycle progression of A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.

Fig. S11 ROS generation in A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.

Fig. S12 Mitochondrial membrane depolarization in A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.

Fig. S13 Formation of DNA double-strand breaks in A549 and MCF-7 cells treated with IC_{90} doses of **Zn** and **Hg**, respectively, for 12 and 24 h. Cisplatin was used as a positive control.