Electronic Supplementary Information

Accelerating Role of Deaggregation Agents in Lithium-Catalysed Hydrosilylation of Carbonyl Compounds

Cristina Ruiz,^a Álvaro-Raya-Barón,^a Manuel A. Ortuño^{*,b}, Ignacio Fernández^{*,a}

^a Department of Chemistry and Physics, Research centre CIAIMBITAL, Ctra. Sacramento, s/n, 04120 Almería, Spain. E-mail: <u>ifernan@ual.es</u>

^b Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain. E-mail: <u>mortuno@iciq.es</u>

TABLE OF CONTENTS

Figure S1–S7. NMR-monitored kinetic profiles for the catalysed hydrosilylation with and without deaggregation agent.

Figure S8. ¹H NMR (500.13 MHz, THF- d_8) spectrum of a typical catalytic reaction crude. **Figure S9–S11**. ¹H, ⁷Li and ³¹P NMR (THF- d_8) spectra at 294 K of a sample based on LiAQ (0.012 mmol), (EtO)₂MeSiH (0.024 mmol), and HMPA (0.096 mmol).

Table S1. Hydrosilylation reactions using TMEDA at concentrations up to 100 mol%.

1. Computed reaction mechanisms.

2. Cited Literature

Figure S1. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LDA (blue diamonds) or by 0.25 mol% LDA and 1.5 mol% HMPA (red circles).

Figure S2. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiHMDS (blue diamonds) or by 0.25 mol% LiHMDS and 1.5 mol% HMPA (red circles).

Figure S3. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiTMP (blue diamonds) or by 0.25 mol% LiTMP and 1.5 mol% HMPA (red circles).

Figure S4. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiAQ (blue diamonds) or by 0.25 mol% LiAQ and 1.5 mol% HMPA (red circles).

Figure S5. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiHMDS (blue diamonds) or by 0.25 mol% LiHMDS and 1.5 mol% DMPU (red circles).

Figure S6. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiHMDS (blue diamonds) or by 0.25 mol% LiHMDS and 1.5 mol% TMEDA (red circles).

Figure S7. Kinetic profile of the transformation of acetophenone into the corresponding silylether via hydrosilylation catalysed by 0.25 mol% LiHMDS and 1.5 mol% PMDTA.

Figure S8. ¹H NMR (500.13 MHz, THF- d_8) spectrum of a typical catalytic reaction crude at 76 % conversion. Signals A and B correspond to the methyl moiety of acetophenone and hydrosilylated product, respectively.

experiment containing LiAQ (0.012 mmol), $(EtO)_2MeSiH$ (0.024 mmol) and HMPA (0.096 mmol).

Figure S10. ⁷Li NMR (194.37 MHz, THF- d_8) spectrum at 294 K of the stoichiometric experiment containing LiAQ (0.012 mmol), (EtO)₂MeSiH (0.024 mmol) and HMPA (0.096 mmol).

Figure S11. ³¹P NMR (202.46 MHz, THF- d_8) spectrum at 294 K of the stoichiometric experiment containing LiAQ (0.012 mmol), (EtO)₂MeSiH (0.024 mmol) and HMPA (0.096 mmol).

Table S1. Hydrosilylations performed in THF at 294 K using LiHMDS and TMEDA at different concentrations.

mol % TMEDA	0	0.125	3.75	100
Conversion after 20'	51.1	52.8	56.0	60.1

1. Computed reaction mechanisms. Mechanism **A** (Scheme S1) is discussed in the main text. Mechanism **B** (Scheme S2) proceeds through a similar pentacoordinated hydridosilicate using **3** as active species (in the absence of hydride **5**). Mechanism **C** (Scheme S3) involves a high-energy transition state where **3** is acting as Lewis acid.

Scheme S1. Reaction mechanism (A) for the hydrosilylation of acetophenone via hydride
5. Gibbs energies in THF in kcal mol⁻¹.

Scheme S2. Reaction mechanism (B) for the hydrosilylation of acetophenone via species
3. Gibbs energies in THF in kcal mol⁻¹.

Scheme S3. Reaction mechanism (C) for the hydrosilylation of acetophenone via species3. Gibbs energies in THF in kcal mol⁻¹.

Scheme S4. Activation step via Li dimer 10. Gibbs energies in THF in kcal mol⁻¹.

2. Cited Literature.

1. A. Raya-Barón, P. Oña-Burgos, A. Rodríguez-Diéguez and I. Fernández, *Organometallics*, 2018, **37**, 2682.