Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2020

Photochromic and luminescent switchable iodoargentate

hybrids directed by solvated lanthanide cations

Electronic Supplementary Information

Pengfei Hao*, Weipin Wang, Junju Shen, Yunlong Fu*

Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

Content

1. Chemical analytical experiment for photoproducts	.2
2. Figures	.3
Fig. S1 IR spectra of 1 (a), 2 (b), 3 (c) and 4 (d).	.3
Fig. S2 TG-DSC curve of 1 (a), 2 (b), 3 (c) and 4 (d).	.3
Fig. S3 The UV-vis absorption spectra and band gaps of 1, 2, 3 and 4.	.4
Fig. S4 The coloration process of crystals for 1 (up) and 4 (below).	.4
Fig. S5 The comparison of PXRD patterns of 1 and 1P	.5
Fig. S6 The comparison of PXRD patterns of 2 and 2P	.5
Fig. S7 The comparison of PXRD patterns of 3 and 3P	.6
Fig. S8 The comparison of PXRD patterns of 4 and 4P	.6
Fig. S9 The SER spectra of 1, 1P, 2, 2P, 3, 3P, 4 and 4P	.7
Fig. S10 The comparison of UV-vis absorption spectra of 1, 1P-decolorized, 2, 2P-decolorize	ed,
3, 3P-decolorized, 4 and 4P-decolorized.	.7
Fig. S11 The switching cycles of coloration-decoloration processes of 1, 2, 3 and 4 upo	วท
alternating UV light irradiation and dark treatment	.8
Fig. S12 The CIE for 1, 2, 3 and 4	.8
Fig. S13 The comparison of coloration rate and fluorescence quenching rate of 1 (a), 2 (b),	3
(c) and 4 (d)	
	.9
3. Tables	.9 .0
3. Tables	.9 10 10
 3. Tables	.9 L0 L0 L2

1. Chemical analytical experiment for photoproducts

Dissolve 0.15 mmol powder samples of **1**, **1P**, **2**, **2P**, **3**, **3P**, **4** and **4P** in 4 ml dimethyl sulfoxide containing 1 mmol NaI and 1 mmol Na₂S₂O₃, respectively. After several minutes, a spot of black precipitated particles are separated out in the solution of **1P-4P**, then put black precipitated particles washed, drained and treated it with concentrated HNO₃, solution of NaCl and concentrated NH₃·H₂O in turn, which further successively confirmed as metal silver. The whole process is carried out in the dark at room temperature.

Fig. S2 TG-DSC curve of 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S3 The UV-vis absorption spectra and band gaps of 1, 2, 3 and 4.

Fig. S4 The coloration process of crystals for 1 (up) and 4 (below).

Fig. S5 The comparison of PXRD patterns of 1 and 1P.

Fig. S6 The comparison of PXRD patterns of 2 and 2P.

Fig. S7 The comparison of PXRD patterns of 3 and 3P.

Fig. S8 The comparison of PXRD patterns of 4 and 4P.

Fig. S10 The comparison of UV-vis absorption spectra of 1, 1P-decolorized, 2, 2P-decolorized, 3,

3P-decolorized, 4 and 4P-decolorized.

Fig. S11 The switching cycles of coloration-decoloration processes of 1, 2, 3 and 4 upon

alternating UV light irradiation and dark treatment.

Fig. S12 The CIE for 1, 2, 3 and 4.

Fig. S13 The comparison of coloration rate and fluorescence quenching rate of 1 (a), 2 (b), 3 (c)

and **4** (d).

3. Tables

Table S1 Crystal data and structure refinement for compounds 1-4.

Compounds	1	2
CCDC code	1976991	1976992
Empirical formula	$C_{32}H_{76}Ag_{7}Eu_{2}I_{13}O_{16}S_{16}$	$C_{16}H_{48}Ag_7EuI_{10}O_8S_8$
Formula weight	3938.62	2801.07
Crystal size (mm)	$0.20\times0.09\times0.08$	$0.20 \times 0.10 \times 0.08$
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	P21/c
<i>a</i> (Å)	43.352(7)	12.4723(4)
b(Å)	12.991(2)	23.4245(10)
<i>c</i> (Å)	18.555(3)	21.0231(8)
α (°)	90	90
<i>в</i> (°)	101.839(4)	99.650(3)
γ(°)	90	90
Volume (ų)	10228(3)	6055.1(4)
Ζ	4	4
D _c (g cm ⁻³)	2.558	3.073
F(000)	7184	5032
μ (mm ⁻¹)	6.807	8.637
ϑ range (°)	2.24 to 28.35	2.91 to 25.00
Reflections collected	71499	26150
Unique reflections	12786	10646
R _{int}	0.0470	0.0290
Goodness-of-fit on F ²	1.033	1.065
R_1/wR_2 , $[l \ge 2\sigma(l)]^{a,b}$	0.0944 / 0.2588	0.0550 / 0.1309
R_1/wR_2 , (all data)	0.1122 / 0.2740	0.0841 / 0.1423
$\Delta ho_{ m max}/\Delta ho_{ m min}$ (e Å ⁻³)	4.493 / -5.850	3.994 / -1.677

Compounds	3	4
CCDC code	1976993	1976999
Empirical formula	$C_{32}H_{92}Ag_7I_{13}O_{16}S_{16}Tb_2$	$C_{16H_{48}Ag_6I_9O_8S_8Tb}$
Formula weight	3968.65	2573.26
Crystal size (mm)	$0.20\times0.09\times0.08$	$0.20\times0.07\times0.06$
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
<i>a</i> (Å)	43.485(16)	31.7458(16)
b(Å)	13.005(5)	19.7768(11)
<i>c</i> (Å)	18.690(7)	22.4989(10)
α (°)	90	90
<i>θ</i> (°)	102.214(10)	125.6640(10)
γ(°)	90	90
Volume (ų)	10331(7)	11476.2(10)
Ζ	4	8
D _c (g cm ⁻³)	2.552	2.979
F(000)	7264	9280
μ (mm ⁻¹)	6.895	8.383
ϑ range (°)	2.25 to 25.00	2.20 to 28.38
Reflections collected	111386	84529
Unique reflections	8997	14307
R _{int}	0.1095	0.0636
Goodness-of-fit on F ²	1.063	1.081
$R_1/wR_2, [I \ge 2\sigma(I)]^{a,b}$	0.1035 / 0.2720	0.0611 / 0.1442
R_1/wR_2 , (all data)	0.1182 / 0.2900	0.0840 / 0.1543
$\Delta ho_{ m max}/\Delta ho_{ m min}$ (e Å ⁻³)	3.311 / -3.731	3.585 / -3.526

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$, ^b $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$

	Compound 1					
Ag(1)-I(2)	2.801(2)	Ag(1)-I(4)	2.859(2)			
Ag(1)-I(3)	2.891(2)	Ag(1)-I(1)	2.900(2)			
Ag(2)-I(2)#2	2.803(2)	Ag(2)-I(3)	2.866(2)			
Ag(2)-I(1)#1	2.889(2)	Ag(2)-I(4)	2.897(2)			
Ag(3)-I(5)	2.7240(19)	Ag(3)-I(6)	2.944(2)			
Ag(3)-I(7)#3	2.972(2)	Ag(3)-I(7)	2.978(2)			
Ag(4)-I(4)	2.972(4)	Ag(4)-I(1)	2.990(4)			
Ag(4)-I(3)#1	3.008(4)	Ag(4)-I(1)#1	3.022(4)			
Eu(1)-O(6)	2.353(13)	Eu(1)-O(2)	2.358(11)			
Eu(1)-O(1)	2.372(12)	Eu(1)-O(4)	2.376(11)			
Eu(1)-O(3)	2.380(12)	Eu(1)-O(5)	2.393(11)			
Eu(1)-O(7)	2.399(11)	Eu(1)-O(8)	2.412(10)			
Ag(1)-Ag(2)	3.055(2)	Ag(2)-Ag(4)	3.053(4)			
Ag(1)-Ag(4)	3.167(4)	Ag(4)-Ag(4)#1	1.761(10)			
Ag(1)-Ag(4)#1	3.186(4)	Ag(4)-Ag(2)#1	3.031(4)			
Ag(2)-Ag(4)#1	3.031(4)	Ag(4)-Ag(1)#1	3.186(4)			
I(2)-Ag(1)-I(4)	115.92(7)	I(5)-Ag(3)-I(6)	120.17(7)			
I(2)-Ag(1)-I(3)	108.81(7)	I(5)-Ag(3)-I(7)#3	117.34(7)			
I(4)-Ag(1)-I(3)	116.10(7)	I(6)-Ag(3)-I(7)#3	99.14(6)			
I(2)-Ag(1)-I(1)	109.75(7)	I(5)-Ag(3)-I(7)	117.61(7)			
I(4)-Ag(1)-I(1)	102.19(7)	I(6)-Ag(3)-I(7)	99.01(6)			
I(3)-Ag(1)-I(1)	102.90(7)	I(7)#3-Ag(3)-I(7)	99.70(7)			
I(2)#2-Ag(2)-I(3)	115.69(7)	I(4)-Ag(4)-I(1)	97.49(11)			
I(2)#2-Ag(2)-I(1)#1	112.31(7)	I(4)-Ag(4)-I(3)#1	117.16(16)			
I(3)-Ag(2)-I(1)#1	106.11(7)	I(1)-Ag(4)-I(3)#1	100.14(12)			

Table S2 Selected bond lengths (Å) and angles (°) for compounds 1-4.

I(2)#2-Ag(2)-I(4)	101.52(7)	I(4)-Ag(4)-I(1)#1	100.16(12)
I(3)-Ag(2)-I(4)	115.69(7)	I(1)-Ag(4)-I(1)#1	145.93(18)
I(1)#1-Ag(2)-I(4)	105.21(7)	I(3)#1-Ag(4)-I(1)#1	97.37(11)
O(6)-Eu(1)-O(2)	107.1(6)	O(3)-Eu(1)-O(5)	73.6(5)
O(6)-Eu(1)-O(1)	142.6(6)	O(6)-Eu(1)-O(7)	76.9(6)
O(2)-Eu(1)-O(1)	86.0(6)	O(2)-Eu(1)-O(7)	144.2(5)
O(6)-Eu(1)-O(4)	70.2(6)	O(1)-Eu(1)-O(7)	72.9(6)
O(2)-Eu(1)-O(4)	73.2(5)	O(4)-Eu(1)-O(7)	137.4(6)
O(1)-Eu(1)-O(4)	146.5(6)	O(3)-Eu(1)-O(7)	120.6(6)
O(6)-Eu(1)-O(3)	145.0(6)	O(5)-Eu(1)-O(7)	73.3(5)
O(2)-Eu(1)-O(3)	77.0(6)	O(6)-Eu(1)-O(8)	75.3(5)
O(1)-Eu(1)-O(3)	71.4(5)	O(2)-Eu(1)-O(8)	73.2(4)
O(4)-Eu(1)-O(3)	78.3(6)	O(1)-Eu(1)-O(8)	75.4(4)
O(6)-Eu(1)-O(5)	84.7(6)	O(4)-Eu(1)-O(8)	120.9(4)
O(2)-Eu(1)-O(5)	141.8(5)	O(3)-Eu(1)-O(8)	136.4(5)
O(1)-Eu(1)-O(5)	106.8(5)	O(5)-Eu(1)-O(8)	144.4(5)
O(4)-Eu(1)-O(5)	77.3(5)	O(7)-Eu(1)-O(8)	73.7(4)
Symmetry code:			
1 : #1 -x+1/2,-y+3/2,-z	#2 -x+1/2,y-1/2,-z+1/2	#3 -x+2,y,-z+3/2 #4	1 -x+1/2,y+1/2,-z+1/2

$1 \cdot H = -X + 1/2 - V + 3/2 - 2$	1 : #1	-x+1	/2 -1	/+3/	/2 -7	
--------------------------------------	---------------	------	-------	------	-------	--

Compound 2					
Ag(1)-I(3)	2.7472(15)	Ag(4)-I(6)	2.9146(15)		
Ag(1)-I(1)	2.9163(19)	Ag(4)-I(9)	2.9331(17)		
Ag(1)-I(2)	2.9303(17)	Ag(5)-I(10)	2.7579(17)		
Ag(1)-I(8)#1	2.9947(17)	Ag(5)-I(6)	2.8745(18)		
Ag(2)-I(3)	2.7680(17)	Ag(5)-I(5)	2.8771(17)		
Ag(2)-I(7)	2.7972(17)	Ag(5)-I(9)	2.9968(18)		
Ag(2)-I(4)	2.8720(17)	Ag(6)-I(4)#2	2.8278(18)		
Ag(2)-I(6)	2.9823(16)	Ag(6)-I(9)#2	2.8584(17)		
Ag(3)-I(2)	2.7433(18)	Ag(6)-I(5)#2	2.8904(17)		
Ag(3)-I(4)	2.8389(17)	Ag(6)-I(9)	2.9960(18)		

Ag(3)-I(6)	2.8911(17)	Ag(7)-I(10)	2.7132(16)
Ag(3)-I(5)	2.987(2)	Ag(7)-I(1)#3	2.828(2)
Ag(4)-I(7)	2.8111(17)	Ag(7)-I(8)	2.8458(18)
Ag(4)-I(8)	2.8255(16)	Eu(1)-O(8)	2.331(10)
Eu(1)-O(4)	2.363(9)	Eu(1)-O(6)	2.416(10)
Eu(1)-O(7)	2.373(10)	Eu(1)-O(5)	2.428(8)
Eu(1)-O(1)	2.399(11)	Eu(1)-O(3)	2.432(12)
Eu(1)-O(2)	2.406(10)		
Ag(1)-Ag(7)#1	2.9584(19)	Ag(5)-Ag(6)#2	3.093(2)
Ag(2)-Ag(4)	3.1452(18)	Ag(6)-Ag(5)#2	3.093(2)
Ag(3)-Ag(6)#2	3.365(2)	Ag(6)-Ag(3)#2	3.365(2)
Ag(4)-Ag(5)	3.3332(19)	Ag(7)-Ag(1)#3	2.9584(19)
I(3)-Ag(1)-I(1)	114.19(6)	I(2)-Ag(3)-I(5)	114.79(6)
I(3)-Ag(1)-I(2)	131.05(6)	I(4)-Ag(3)-I(5)	101.90(6)
I(1)-Ag(1)-I(2)	96.37(5)	I(6)-Ag(3)-I(5)	102.57(6)
I(3)-Ag(1)-I(8)#1	112.33(6)	I(7)-Ag(4)-I(8)	112.89(5)
I(1)-Ag(1)-I(8)#1	99.87(5)	I(7)-Ag(4)-I(6)	112.51(5)
I(2)-Ag(1)-I(8)#1	97.89(5)	I(8)-Ag(4)-I(6)	94.82(5)
I(3)-Ag(2)-I(7)	118.08(6)	I(7)-Ag(4)-I(9)	107.70(5)
I(3)-Ag(2)-I(4)	112.51(5)	I(8)-Ag(4)-I(9)	120.05(6)
I(7)-Ag(2)-I(4)	110.19(6)	I(6)-Ag(4)-I(9)	108.28(5)
I(3)-Ag(2)-I(6)	102.66(5)	I(10)-Ag(5)-I(6)	108.50(6)
I(7)-Ag(2)-I(6)	110.90(5)	I(10)-Ag(5)-I(5)	118.24(6)
I(4)-Ag(2)-I(6)	100.85(5)	I(6)-Ag(5)-I(5)	105.78(5)
I(2)-Ag(3)-I(4)	122.74(7)	I(10)-Ag(5)-I(9)	108.12(6)
I(2)-Ag(3)-I(6)	108.68(6)	I(6)-Ag(5)-I(9)	107.63(5)
I(4)-Ag(3)-I(6)	103.92(5)	I(5)-Ag(5)-I(9)	108.13(5)

I(4)#2-Ag(6)-I(9)#2	121.19(6)	I(5)#2-Ag(6)-I(9)	106.77(6)
I(4)#2-Ag(6)-I(5)#2	104.63(6)	I(10)-Ag(7)-I(1)#3	124.05(7)
I(9)#2-Ag(6)-I(5)#2	111.66(5)	I(10)-Ag(7)-I(8)	126.93(7)
I(4)#2-Ag(6)-I(9)	110.46(5)	I(1)#3-Ag(7)-I(8)	105.75(5)
I(9)#2-Ag(6)-I(9)	101.47(5)	O(8)-Eu(1)-O(4)	100.0(4)
O(8)-Eu(1)-O(7)	89.4(5)	O(8)-Eu(1)-O(5)	148.3(4)
O(4)-Eu(1)-O(7)	141.3(3)	O(4)-Eu(1)-O(5)	76.3(3)
O(8)-Eu(1)-O(1)	75.2(5)	O(7)-Eu(1)-O(5)	76.3(3)
O(4)-Eu(1)-O(1)	148.0(3)	O(1)-Eu(1)-O(5)	124.0(4)
O(7)-Eu(1)-O(1)	70.7(3)	O(2)-Eu(1)-O(5)	131.5(4)
O(8)-Eu(1)-O(2)	74.0(5)	O(6)-Eu(1)-O(5)	76.2(4)
O(4)-Eu(1)-O(2)	72.0(3)	O(8)-Eu(1)-O(3)	139.3(5)
O(7)-Eu(1)-O(2)	145.9(3)	O(4)-Eu(1)-O(3)	89.2(4)
O(1)-Eu(1)-O(2)	76.4(4)	O(7)-Eu(1)-O(3)	107.8(4)
O(8)-Eu(1)-O(6)	72.6(4)	O(1)-Eu(1)-O(3)	76.4(4)
O(4)-Eu(1)-O(6)	73.8(3)	O(2)-Eu(1)-O(3)	71.4(5)
O(7)-Eu(1)-O(6)	73.5(3)	O(6)-Eu(1)-O(3)	147.0(4)
O(1)-Eu(1)-O(6)	131.3(4)	O(5)-Eu(1)-O(3)	72.4(4)
O(2)-Eu(1)-O(6)	126.3(4)		
Symmetry code:			
2 : #1 x,-y+3/2,z-1/2	#2 -x,-y+2,-z+1	#3 x,-y+3/2,z+1/2	
		Compound 3	
Ag(1)-I(1)	2.810(2)	Ag(3)-I(4)	2.970(5)
Ag(1)-I(4)#1	2.875(3)	Ag(3)-I(3)#3	3.008(5)
Ag(1)-I(2)#1	2.910(3)	Ag(3)-I(3)	3.023(5)
Ag(1)-I(3)#2	2.913(3)	Ag(3)-I(2)#3	3.026(5)
Ag(2)-I(1)	2.819(2)	Ag(4)-I(7)	2.741(2)
Ag(2)-I(2)	2.881(3)	Ag(4)-I(5)	2.949(3)
Ag(2)-I(3)	2.906(3)	Ag(4)-I(6)	2.989(3)
Ag(2)-I(4)	2.914(3)	Ag(4)-I(6)#6	2.992(3)

Tb(1)-O(3)	2.329(16)	Tb(1)-O(8)	2.380(12)
Tb(1)-O(5)	2.364(14)	Tb(1)-O(6)	2.384(13)
Tb(1)-O(1)	2.369(14)	Tb(1)-O(2)	2.388(13)
Tb(1)-O(7)	2.370(11)	Tb(1)-O(4)	2.389(13)
Ag(1)-Ag(2)#1	3.082(3)	Ag(2)-Ag(1)#4	3.082(3)
Ag(1)-Ag(3)#1	3.215(5)	Ag(3)-Ag(3)#3	1.790(12)
Ag(1)-Ag(3)#2	3.233(5)	Ag(3)-Ag(2)#3	3.039(5)
Ag(2)-Ag(3)#3	3.039(5)	Ag(3)-Ag(1)#4	3.215(5)
Ag(2)-Ag(3)	3.057(5)	Ag(3)-Ag(1)#5	3.233(5)
Ag(4)-Ag(4)#6	2.821(4)		
I(1)-Ag(1)-I(4)#1	115.70(9)	I(4)-Ag(3)-I(3)#3	97.19(13)
I(1)-Ag(1)-I(2)#1	109.03(8)	I(4)-Ag(3)-I(3)	100.67(13)
I(4)#1-Ag(1)-I(2)#1	115.84(9)	I(3)#3-Ag(3)-I(3)	145.5(2)
I(1)-Ag(1)-I(3)#2	111.53(9)	I(4)-Ag(3)-I(2)#3	117.5(2)
I(4)#1-Ag(1)-I(3)#2	101.54(8)	I(3)#3-Ag(3)-I(2)#3	100.65(13)
I(2)#1-Ag(1)-I(3)#2	102.08(8)	I(3)-Ag(3)-I(2)#3	96.93(12)
I(1)-Ag(2)-I(2)	115.68(8)	I(7)-Ag(4)-I(5)	120.18(8)
I(1)-Ag(2)-I(3)	111.73(9)	I(7)-Ag(4)-I(6)	117.23(9)
I(2)-Ag(2)-I(3)	106.74(9)	I(5)-Ag(4)-I(6)	99.11(7)
I(1)-Ag(2)-I(4)	101.86(8)	I(7)-Ag(4)-I(6)#6	117.47(9)
I(2)-Ag(2)-I(4)	115.52(8)	I(5)-Ag(4)-I(6)#6	99.05(7)
I(3)-Ag(2)-I(4)	104.90(8)	I(6)-Ag(4)-I(6)#6	99.99(8)
O(3)-Tb(1)-O(5)	70.1(7)	O(8)-Tb(1)-O(6)	70.2(5)
O(3)-Tb(1)-O(1)	78.3(7)	O(3)-Tb(1)-O(2)	75.5(8)
O(5)-Tb(1)-O(1)	120.2(6)	O(5)-Tb(1)-O(2)	138.0(5)
O(3)-Tb(1)-O(7)	110.8(8)	O(1)-Tb(1)-O(2)	73.8(5)
O(5)-Tb(1)-O(7)	73.4(5)	O(5)-Tb(1)-O(2)	138.0(5)

O(1)-Tb(1)-O(7)	72.5(5)	O(1)-Tb(1)-O(2)	73.8(5)
O(3)-Tb(1)-O(8)	144.2(7)	O(7)-Tb(1)-O(2)	143.3(5)
O(5)-Tb(1)-O(8)	145.1(6)	O(8)-Tb(1)-O(2)	74.3(6)
O(1)-Tb(1)-O(8)	75.3(6)	O(6)-Tb(1)-O(2)	120.8(6)
O(7)-Tb(1)-O(8)	83.6(6)	O(3)-Tb(1)-O(4)	82.5(8)
O(3)-Tb(1)-O(6)	143.7(6)	O(5)-Tb(1)-O(4)	78.0(5)
O(5)-Tb(1)-O(6)v	78.9(6)	O(1)-Tb(1)-O(4)	145.9(5)
O(1)-Tb(1)-O(6)	135.4(5)	O(7)-Tb(1)-O(4)	141.3(5)
O(7)-Tb(1)-O(6)	76.4(5)	O(8)-Tb(1)-O(4)	107.0(6)
O(6)-Tb(1)-O(4)	73.0(6)	O(2)-Tb(1)-O(4)	74.3(6)
Symmetry code:			
3 : #1 -x+1/2,γ+1/2,-z+1/	/2 #2 x,-γ+1,z+1/2	#3 -x+1/2,-y+1/2,-z	
#4 -x+1/2,y-1/2,-z+1/	2 #5 x,-y+1,z-1/2	#6 -x+2,y,-z+1/2	

	Compound 4					
Ag(1)-I(1)	2.8106(13)	Ag(4)-I(7)	2.7550(13)			
Ag(1)-I(3)	2.8515(12)	Ag(4)-I(5)	2.8792(13)			
Ag(1)-I(2)	2.8724(13)	Ag(4)-I(4)	2.8880(13)			
Ag(1)-I(6)	2.9633(12)	Ag(4)-I(6)	2.9276(13)			
Ag(2)-I(1)#1	2.7708(13)	Ag(5)-I(8)	2.8032(13)			
Ag(2)-I(3)	2.8430(13)	Ag(5)-I(2)	2.8373(12)			
Ag(2)-I(6)	2.9217(13)	Ag(5)-I(5)	2.8467(13)			
Ag(2)-I(4)	3.0143(15)	Ag(5)-I(6)	3.0023(14)			
Ag(3)-I(9)#2	2.8267(15)	Ag(6)-I(7)	2.7615(17)			
Ag(3)-I(3)	2.8605(13)	Ag(6)-I(9)	2.7655(18)			
Ag(3)-I(5)	2.8907(14)	Ag(6)-I(8)	2.7661(15)			
Ag(3)-I(4)	2.9381(14)	Tb(1)-O(2)	2.324(7)			
Tb(1)-O(6)	2.344(7)	Tb(1)-O(4)	2.392(8)			
Tb(1)-O(7)	2.362(7)	Tb(1)-O(8)	2.394(7)			
Tb(1)-O(3)	2.366(7)	Tb(1)-O(1)	2.401(7)			
Tb(1)-O(5)	2.373(7)					

l(1)-Ag(1)-l(3)	122.57(4)	I(5)-Ag(3)-I(4)	102.81(4)
l(1)-Ag(1)-l(2)	106.02(4)	I(7)-Ag(4)-I(5)	114.59(5)
l(3)-Ag(1)-l(2)	110.86(4)	I(7)-Ag(4)-I(4)	104.98(4)
l(1)-Ag(1)-l(6)	104.95(4)	I(5)-Ag(4)-I(4)	104.36(4)
l(3)-Ag(1)-l(6)	103.07(4)	I(7)-Ag(4)-I(6)	106.98(4)
I(2)-Ag(1)-I(6)	108.58(4)	I(5)-Ag(4)-I(6)	111.29(4)
l(1)#1-Ag(2)-l(3)	120.74(5)	I(4)-Ag(4)-I(6)	114.68(4)
l(1)#1-Ag(2)-l(6)	112.58(4)	I(8)-Ag(5)-I(2)	122.30(4)
l(3)-Ag(2)-l(6)	104.34(4)	I(8)-Ag(5)-I(5)	115.37(5)
l(1)#1-Ag(2)-l(4)	103.03(4)	I(2)-Ag(5)-I(5)	101.53(4)
I(3)-Ag(2)-I(4)	104.73(4)	I(8)-Ag(5)-I(6)	98.89(4)
I(6)-Ag(2)-I(4)	111.13(4)	I(2)-Ag(5)-I(6)	108.45(4)
I(9)#2-Ag(3)-I(3)	113.22(4)	I(5)-Ag(5)-I(6)	110.07(4)
I(9)#2-Ag(3)-I(5)	107.02(5)	I(7)-Ag(6)-I(9)	114.41(5)
I(3)-Ag(3)-I(5)	112.22(4)	I(7)-Ag(6)-I(8)	115.23(6)
I(9)#2-Ag(3)-I(4)	114.91(4)	I(9)-Ag(6)-I(8)	128.31(6)
l(3)-Ag(3)-l(4)	106.28(4)	O(2)-Tb(1)-O(6)	144.0(3)
O(6)-Tb(1)-O(7)	82.1(3)	O(3)-Tb(1)-O(4)	76.5(3)
O(2)-Tb(1)-O(3)	88.9(3)	O(5)-Tb(1)-O(4)	74.5(3)
O(6)-Tb(1)-O(3)	143.1(3)	O(2)-Tb(1)-O(8)	73.4(3)
O(7)-Tb(1)-O(3)	108.0(3)	O(6)-Tb(1)-O(8)	70.8(3)
O(2)-Tb(1)-O(5)	144.0(3)	O(7)-Tb(1)-O(8)	75.2(2)
O(6)-Tb(1)-O(5)	75.0(3)	O(3)-Tb(1)-O(8)	145.7(3)
O(7)-Tb(1)-O(5)	71.9(3)	O(5)-Tb(1)-O(8)	135.0(3)
O(3)-Tb(1)-O(5)	74.9(3)	O(4)-Tb(1)-O(8)	122.0(3)
O(2)-Tb(1)-O(4)	70.5(3)	O(2)-Tb(1)-O(1)	74.3(3)
O(6)-Tb(1)-O(4)	75.3(3)	O(6)-Tb(1)-O(1)	143.7(3)
O(7)-Tb(1)-O(4)	143.3(3)	O(7)-Tb(1)-O(1)	80.6(3)

O(3)-Tb(1)-O(1)	73.0(3)	O(4)-Tb(1)-O(1)	133.2(3)
O(5)-Tb(1)-O(1)	128.0(3)	O(8)-Tb(1)-O(1)	74.0(3)
Symmetry code:			
4 : #1 -x+3/2,-y+1/2,-z+1	#2 x,-y,z+1/2	#3 x,-y,z-1/2	

Entry	Lanthanide nitrate (mmol)	AgI (mmol)	KI (mmol)	DMSO (mL)	Ag/I	Products
1	0.25	0.5	1.5	4	1:4	1
2	0.25	0.5	1.0	4	1:3	1 and 2
3	0.25	2.0	2.0	4	1:2	2
4	0.25	0.5	1.5	4	1:4	3
5	0.25	0.5	1.0	4	1:3	3 and 4
6	0.25	3.0	3.0	4	1:2	4

Table S3 Synthesis conditions for compounds 1, 2, 3 and 4.