Supporting Information

Interface engineering of Co$_3$O$_4$ nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline battery

Ke Zhanga, Xiao Yea, Yuenian Shenb, Ze Cena, Kaibing Xub, and Fang Yanga

a College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.

b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

E-mail: yfang@sues.edu.cn.

Part I: Calculation

For the RAB and three-electrode system, we calculated the electrode’s areal capacitance (mAh/cm2) based on this equation:

$$C = \frac{I \Delta t}{S}$$

Where, C is the specific capacitance (mAh/cm2), I is the applied current (mA), S is the geometrical area of the electrode (cm2) and Δt is discharge time (h).1

The energy density (E) and power density (P) of the two electrodes in the RAB device are calculated based on the following equations:

$$E = C \Delta V$$

$$P = \frac{E}{\Delta t}$$
Where C is the specific capacity, ΔV is the potential change during the discharge process and Δt is the discharge time.2

In order to maintain the charge balance of $q^+ = q^-$ between the cathode and anode, the optimal mass ratio should follow the following formula:

$$\frac{m^+}{m^-} = \frac{C^- \Delta V^-}{C^+ \Delta V^+}$$

In which m^+, V^+, and C^+ denote the mass, potential window and specific capacity of the positive electrode, respectively, and m^-, V^-, and C^- are the corresponding negative one, respectively.3 Therefore, the calculated mass ratio between the Co$_3$O$_4$@NiO electrode and AC electrode is about $1:5$.

Part II: Figures

![XRD pattern of Co$_3$O$_4$ materials on Ni foam.](image)

Fig. S1. XRD pattern of Co$_3$O$_4$ materials on Ni foam.
Fig. S2. (a, c, e) CV curves at different scanning rates, (b, d, f) CD curves at different current densities of Co$_3$O$_4$, Co$_3$O$_4$@NiCo$_2$O$_4$, Co$_3$O$_4$@MnO$_2$, respectively.
Fig. S3. (a) The relationship between log (i) and log (v) plots of Co$_3$O$_4$@NiO electrode.

Fig. S4. (a) CV curves and (b) CD curves of AC electrode.
Fig. S5. Ragone plot of the RABs device.

Fig. S6. High-resolution XPS spectra of (a) Ni 2p, (b) Co 2p, (c) O 1s and (d) Mn 2p for the Co$_3$O$_4$@NiCo$_2$O$_4$ and Co$_3$O$_4$@MnO$_2$ Composites

The XPS spectra of Co$_3$O$_4$@NiCo$_2$O$_4$ and Co$_3$O$_4$@MnO$_2$ are shown in Fig. S6.
The binding energy of Ni $2p$ is 874.2, 861.7 eV peak corresponds to Ni$^{3+}$, 872.9, 854.9 eV peak corresponds to Ni$^{2+}$ (Fig. S6a). The strong satellite peak indicates that Ni$^{2+}$ is the dominant element in the lattice. In the Co $2p$ spectra, binding energy at 796.0 and 780.9 eV corresponds to Co$^{2+}$, 795.3 and 780.0 eV corresponds to Co$^{3+}$ (Fig. S6b). In Fig. S6c, the peak at binding energy 531.6 eV indicates the hydroxylation of the surface of the material and the peak at 529.9 eV is a typical metal-oxygen bonding peak. For Mn $2p$ XPS spectra (Fig. S6d), the peaks at binding energies of 654.3 and 642.5 eV correspond to Mn $2p_{1/2}$ and Mn $2p_{3/2}$, respectively.

References