Electronic Supplementary Material

IrCo Alloy nanoparticles supported N-Doped carbon for hydrogen evolution electrocatalysis in acidic and alkaline electrolytes

Chunxiao Wu^a, Meng Zhang^a, Feijiang Chen^a, Huiying Kang^a, Shandong Xu^{b,*}, Sailong Xu^{a,*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; ^bCollege of Science, Beijing Forestry University, Beijing 100083, China

*Corresponding authors. E-mail addresses: xusl@mail.buct.edu.cn (S.L. Xu); xushd@bjfu.edu.cn (S.D. Xu)

Figure S1 XRD patterns of Ir doped-Co(OH) $_2/g$ -C $_3N_4$ and g-C $_3N_4$.

Fig. S2 A histogram of size distribution of IrCo nanoparticles.

Figure S3

Figure S3 Raman spectra of IrCo/NC and Co/NC.

Figure S4

Figure S4 XRD patterns of (a) Co/NC and (b) IrCo alloy for comparison.

Fig. S5 TEM images of (a) Co/NC and (b) IrCo alloy.

Fig. S6 Nitrogen adsorption/desorption isotherms and pore size distribution (inset) of (a) Co/NC and (b) IrCo alloy.

Figure S7

Fig. S7 Polarization curves the Co and $g-C_3N_4$ composite in 0.5 M H₂SO₄.

Figure S8

Fig. S8 Nyquist plots of Nyquist plots of the IrCo/NC, Co/NC and IrCo alloy with a fitted equivalent circuit (inset) in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Figure S9 Estimation of electrochemical double-layer capacitance (C_{dl}) for IrCo/NC, Co/NC and IrCo alloy in 0.5 M H₂SO₄ solution.

Fig. S10 The time-dependent chronoamperometric test at a static electrolysis potential of Co/NC, IrCo alloy, and IrCo/NC in 0.5 M H_2SO_4 solution.

Fig. S11 TEM image of the IrCo/NC before and after time-dependent chronoamperometric test in 0.5 M H_2SO_4 .

Figure S12

Fig. S12 Nyquist plots of Nyquist plots of the IrCo/NC, Co/NC and IrCo alloy with a fitted equivalent circuit (inset) in 1 M KOH solution.

Figure S13 Estimation of electrochemical double-layer capacitance (C_{dl}) for IrCo/NC, Co/NC and IrCo alloy in 1M KOH solution.

Table S1.

Comparison of electrocatalytic performances for the HER between the electrocatalysts reported recently. The electrolyte is $0.5 \text{ M H}_2\text{SO}_4$.

Electrocatalysts	Electrolyte (H ₂ SO ₄)	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	References
RuP ₂ @N, P-doped carbon	0.5 M	38	38	1
RuNi Nanoalloys	0.5 M	41	31	2
W/Ru/C	0.5 M	85	46	3
hcp-Ru@N-doped carbon	0.5 M	27.5	37	4
CoRu@N-doped carbon	0.5 M	94	64	5
IrNi@O-doped carbon	0.5 M	35	27	6
IrCo@N-doped carbon	0.5 M	24	23	7
Ru@nitrogenated carbon	0.5 M	22	30	8
Co@N-doped graphene/N- doped RGO	0.5 M	62	91	9
IrCo/N-doped carbon	0.5 M	32	36	This work

- 1 Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, *Angew. Chem. Int. Ed.*, 2017, 56, 11559-11564.
- 2 C. Zhang, Y. Liu, Y. Chang, Y. Lu, S. Zhao, D. Xu, Z. Dai, M. Han and J. Bao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17326-17336.
- 3 U. Joshi, S. Malkhandi, Y. Ren, T. L. Tan, S. Y. Chiam and B. S. Yeo, *ACS Appl. Mater. Interfaces*, 2018, **10**, 6354-6360.
- 4 Y. Li, L. A. Zhang, Y. Qin, F. Chu, Y. Kong, Y. Tao, Y. Li, Y. Bu, D. Ding and M. Liu, *ACS Catal.*, 2018, **8**, 5714-5720.
- 5 Z. Wei, Y. Liu, Z. Peng, H. Song, Z. Liu, B. Liu, B. Li, B. Yang and S. Lu, *ACS Sustain. Chem. Eng.*, 2019, **7**, 7014-7023.
- 6 S. Gong, C. Wang, P. Jiang, K. Yang, J. Lu, M. Huang, S. Chen, J. Wang and Q. Chen, *J. Mater. Chem. A*, 2019, **7**, 15079-15088.
- 7 P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su and Q. Chen, *Adv. Mater.*, 2018, **30**, 1805606.
- 8 J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, *Nat Nanotech.*, 2017, **12**, 441-446.
- 9 L. Jiang, L. Qiu, T. Cen, Y. Y. Liu, X. Peng, Z. Ye and D. Yuan, *Chem. Commun.*, 2020, **56**, 567-570.
- 10 W. Lu, W. Li, G. Xiang and L. Wang, *Inorg. Chem.*, 2019, **58**, 6529–6533.

Table S2.

Comparison of electrocatalytic performances for the HER between the electrocatalysts reported recently. The electrolyte is 1.0 M KOH.

Electrocatalysts	Electrolyte (KOH)	$\eta_{10 \text{ mA cm}}^{-2}$ (mV)	Tafel slope (mV dec ⁻¹)	References
RuP ₂ @N,P-doped carbon	1 M	52	69	1
CoRu@N-doped carbon	1 M	27	74	2
IrNi@O-doped carbon	1 M	27	18	3
IrCo@N-doped carbon	1 M	45	23	4
Co@N-doped graphene/N-	1 M	64	70	5
doped RGO				
PtNi alloy	1 M	27.7	27	6
Ru/N-doped carbon	1 M	21	31	7
PtNi alloy	1 M	65	74	8
Pt-Co(OH) ₂ /C	1 M	32	70	9
Ru-ZIF-900	1 M	51.6	78.4	10
IrCo/NC	1 M	33	53	This work

- 1 Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, *Angew. Chem. Int. Ed.*, 2017, 56, 11559-11564.
- 2 Z. Wei, Y. Liu, Z. Peng, H. Song, Z. Liu, B. Liu, B. Li, B. Yang and S. Lu, *ACS Sustain. Chem. Eng.*, 2019, **7**, 7014-7023.
- 3 S. Gong, C. Wang, P. Jiang, K. Yang, J. Lu, M. Huang, S. Chen, J. Wang and Q. Chen, *J. Mater. Chem. A*, 2019, **7**, 15079-15088.
- 4 P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su and Q. Chen, *Adv. Mater.*, 2018, **30**, 1805606.
- 5 L. Jiang, L. Qiu, T. Cen, Y. Y. Liu, X. Peng, Z. Ye and D. Yuan, *Chem. Commun.*, 2020, **56**, 567-570.
- 6 Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. Xi, Y. Du, A. Borgna, Z. Lai, Q. Zhang, B. Li, Y. Zong, Y. Han, L. Gu and H. Zhang, *Adv. Mater.*, 2018, **30**, 1801741.
- 7 J. Zhang, P. Liu, G. Wang, P. P. Zhang, X. D. Zhuang, M. W. Chen, I. M. Weidinger and X. L. Feng, *J. Mater. Chem. A*, 2017, **5**, 25314-25318.
- 8 Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. A. Lu, Z. Xie and L. Zheng, *Nat. Commun.*, 2017, **8**, 15131.
- 9 Z. Xing, C. Han, D. Wang, Q. Li and X. Yang, ACS Catal., 2017, 7, 7131-7135.
- 10 L. Xing, H. Gao, G. Hai, Z. Tao, J. Zhao, D. Jia, X. Chen, M. Han, S. Hong, L. Zheng, X. Huang, W. Dong, G. Wang and X. Shu, *J. Mater. Chem. A*, 2020, 8, 3203-3210.

Table S3

Comparison of overpotential and Tafel slope between the Ir-based alloy catalysts at a high current density of 100 mA cm⁻² in 0.5 M H₂SO₄.

ingh current density of 100 millerin in ole 11112,504.					
Electrocatalysts	Electrolyte	η_{100}	Tafel slope	Deferences	
	(H_2SO_4)	(mV)	(mV dec ⁻¹)	Kelelences	
IrNi@O-doped carbon	0.5 M	95	27	1	
CuCoPt alloy nanoparticles	0.5 M	48	20	2	
IrCo/NC	0.5 M	113	36	This work	

- S. Gong, C. Wang, P. Jiang, K. Yang, J. Lu, M. Huang, S. Chen, J. Wang and Q. Chen, J. Mater. Chem. A, 2019, 7, 15079-15088.
- 2 W. Lu, W. Li, G. Xiang and L. Wang, Inorg. Chem., 2019, 58, 6529-653

Table S4

Electrocatalysts	Electrolyte	η_{100}	Tafel slope	References	
	(KOH)	(mV)	(mV dec ⁻¹)		
Cr-Co ₄ N NR/CC	1 M	99	38.1	1	
Ni ₃ N NS	1 M	100	27	2	
Cu _x Ni _{4-x} N/NF	1 M	111	32	3	
IrCo/NC	1 M	175	53	This work	

Comparison of overpotential and Tafel slope between at a high current density of 100 mA $\rm cm^{-2}$ in 1 MKOH.

- 1 N. Yao, P. Li, Z. Zhou, Y. Zhao, G. Cheng, S. Chen and W. Luo, *Adv. Energy Mater.*, 2019, **9**, 1902449.
- D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, and J. Ding, *J. Mater. Chem. A*, 2016, 4, 17363.
- 3 Y. Ma, Z. He, Z. Wu, B. Zhang , Y. Zhang, S. Ding, C. Xiao, *J. Mater. Chem. A*, 2017, **5**, 24850-2485.