Supplementary Information

Understanding and Controlling the Covalent Functionalisation of Graphene

Adam J. Clancy,^{a*} Heather Au,^b Noelia Rubio,^c Gabriel O. Coulter,^c Milo S. P. Shaffer^{c*}

^a. Dept. Chemistry, UCL, Gower Street, London, WC1H 0AJ, U.K. *a.clancy@ucl.ac.uk

^{b.} Dept. Chemical Engineering, Imperial College London, London, SW7 2AZ, U.K.

^c Dept. Chemistry, Imperial College London, London, SW7 2AZ, U.K.

*m.shaffer@imperial.ac.uk

Figure S1. Fully annotated version of Figure 2b in the main text; Degree of functionalisation for reactions with the graphene carbon framework: summary of available literature plotting molecular weight of grafted moiety versus degree of functionalisation (R/C, left) and grafting stoichiometry (C/R, right), categorised by reaction type (by colour), annotating each data point with its respective reference.

Table S1. Tabulated summary of available literature data used in Figures 2b and S1 of various graphene-functionalisation reaction types, describing molecular weights of the grafted moieties and the grafting stoichiometry, as determined by either TGA or XPS, with corresponding references.

Reaction Class	Mw(R) (g/mol)	C/R (TGA)	C/R (XPS)	Reference	Reaction Class	Mw(R) (g/mol)	C/R (TGA)	C/R (XPS)	Reference
Cycloaddition	76.1	5.4		1	Reductive	169.37	46.8		21
	112.08	17.8	16.0		Functionalisation	281.61	78.5		
	90.13	25.5				281.61	107.1		
	262.4	137.7		2		281.61	77.2		
	165.21	41.3		3		169.37	50.3		22
	130.18	296.3		4		169.37	27.5		
	130.18	501.1				169.37	32.8		
	175.18	423.8				77.11	54.2		23
	175.18	299.9				73.21	163.4		24
	667.81	235.0		5		283.66	513.6		
	772.21	240.0				227.54	70.1		
	179.19		40.0	6		800	149.0	278.0	25
	167.6		50.0			1000	149.0	334.0	
	303.49		110.0			1400	149.0	151.0	
	311.37		60.0			2300	149.0	208.0	
						5000	2055.0	1869.0	
Halogenation	35.45		12.5	7		8000	4421.0	4390.0	
	19		4.0	8		10000	6615.0	5490.0	
	19		4.6			97.02	206.0	149.0	
	19		4.8			133.23	81.4		26
	19		1.0	9		613.77	342.3		27
	35.45		3.8	10		782.13	586.6		
	79.9		24.0			133.23	2500		28
	35.45		2.3	11		156	10000		
	79.9		19.8			133.23	769.0		
						133.23	2500		
Organo radical	111.55	30.6		12		133.23	5000		
	122.11	46.6				79.9	71.0	108.0	29
	107.14	29.3				1.01	2.2		30
	156	38.0				1.01	1.5		
	207.21	224.5		13		1.01	1.6		
	266.33	10.0	13.0	14		1.01	3.2		
	87.22		53.0	15		1.01	1.9		
	171.81	37.0		16		1.01	1.8		
	68.11	51.1	52.0	17		1.01	4.2		
	547.16	35.8	53.0	18		1.01	8.8		
	519.1	34.0	29.0			1.01	4.3		
	158.17	44.0		19		2.01	6.5		
	498.7	198.0				2.01	2.1		
	59.08	18.6		20		2.01	2.4		
	72.13	36.9				2.01	6.8		
	208.07	19.1				2.01	2.9		
	150.10	59.6				2.01	3.9		
	297.45	24.6				2.01	7.9		
	3225.17	980.0				2.01	20.0		
	507.19	163.0				2.01	18.2		21
	2057.19	507.0				5000	2702.0		51
	2057.19	055.0				5000	3792.0		
Reductive Functionalisation	57.13	32.4		21	Thermochemical	169.3	830.0		32
	169.37	111.1				380.38	830.0		
	169.37	88.1				430.91	830.0		
	169.37	68.9				1452.08	830.0		
	281.61	337.5							
	281.61	137.2			Oxidation				33
	57.13	22.1			Oxidation				34

When interpreting data in the literature, the following relationships were used determine C/R:

$$\frac{C}{R} = \frac{wt\%(C)}{Ar(C)} \times \frac{Mw(R)}{wt\%(R)}$$
(S1)

Used for TGA data where wt%(R) and wt%(C) are the weight percentages of the functional group and framework carbon (usually the remaining mass after pyrolysis), respectively; Mw(R) and Ar(C) are the molecular and atomic weights of the functional group and carbon respectively.

$$\frac{C}{R} = \frac{at\%(C) - \frac{at\%(X) \times n}{m}}{\frac{at\%(X)}{m}}$$
(S2)

For XPS data, for functional groups with carbon to heteroatom (X) stoichiometry $C_n X_m$, with at%(C) and at%(X) the atomic percentages of carbon and heteroatom respectively.

References:

- 1. X. Zhong, J. Jin, S. Li, Z. Niu, W. Hu, R. Li and J. Ma, *Chem. Commun.*, 2010, **46**, 7340-7342.
- 2. M. Quintana, K. Spyrou, M. Grzelczak, W. R. Browne, P. Rudolf and M. Prato, *ACS Nano*, 2010, **4**, 3527-3533.
- 3. V. Georgakilas, A. B. Bourlinos, R. Zboril, T. A. Steriotis, P. Dallas, A. K. Stubos and C. Trapalis, *Chem. Commun.*, 2010, **46**, 1766-1768.
- 4. G. Neri, A. Scala, E. Fazio, P. G. Mineo, A. Rescifina, A. Piperno and G. Grassi, *Chem. Sci.*, 2015, **6**, 6961-6970.
- 5. X. Zhang, L. Hou, A. Cnossen, A. C. Coleman, O. Ivashenko, P. Rudolf, B. J. van Wees, W. R. Browne and B. L. Feringa, *Chem. Eur.*, 2011, **17**, 8957-8964.
- 6. L. Yang and J. He, *Chem. Commun.*, 2014, **50**, 15722-15725.
- 7. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou and Z. Liu, ACS Nano, 2011, 5, 5957-5961.
- 8. K. I. Ho, C. H. Huang, J. H. Liao, W. Zhang, L. J. Li, C. S. Lai and C. Y. Su, *Sci. Rep.*, 2014, **4**, 5893.
- J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan and E. S. Snow, *Nano Lett.*, 2010, 10, 3001-3005.
- 10. J. Zheng, H. T. Liu, B. Wu, C. A. Di, Y. L. Guo, T. Wu, G. Yu, Y. Q. Liu and D. B. Zhu, *Sci. Rep.*, 2012, **2**, 662.
- 11. K. Gopalakrishnan, K. S. Subrahmanyam, P. Kumar, A. Govindaraj and C. N. R. Rao, *RSC Adv.*, 2012, **2**, 1605-1608.
- 12. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, *J. Am. Chem. Soc.*, 2008, **130**, 16201-16206.
- 13. B. D. Ossonon and D. Bélanger, *Carbon*, 2017, **111**, 83-93.
- 14. T. A. Strom, E. P. Dillon, C. E. Hamilton and A. R. Barron, *Chem. Commun.*, 2010, **46**, 4097-4099.
- 15. J. Choi, K. J. Kim, B. Kim, H. Lee and S. Kim, J. Phys. Chem. C, 2009, **113**, 9433-9435.
- 16. T. Sainsbury, M. Passarelli, M. Naftaly, S. Gnaniah, S. J. Spencer and A. J. Pollard, *ACS Appl. Mater. Interfaces*, 2016, **8**, 4870-4877.
- 17. X. Zhang, M. Han, S. Chen, L. Bao, L. Li and W. Xu, *RSC Adv.*, 2013, **3**.

- 18. C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron, *Nano Res.*, 2010, **3**, 138-145.
- 19. S. P. Economopoulos, G. Rotas, Y. Miyata, H. Shinohara and N. Tagmatarchis, *ACS Nano*, 2010, **4**, 7499-7507.
- 20. H. K. He and C. Gao, *Chem Mater*, 2010, **22**, 5054-5064.
- 21. T. Morishita, A. J. Clancy and M. S. P. Shaffer, J. Mater. Chem. A, 2014, 2, 15022-15028.
- 22. K. C. Knirsch, J. M. Englert, C. Dotzer, F. Hauke and A. Hirsch, *Chem. Commun.*, 2013, **49**, 10811-10813.
- J. M. Englert, P. Vecera, K. C. Knirsch, R. A. Schafer, F. Hauke and A. Hirsch, ACS Nano, 2013, 7, 5472-5482.
- 24. K. C. Knirsch, F. Hof, V. Lloret, U. Mundloch, F. Hauke and A. Hirsch, *J. Am. Chem. Soc.*, 2016, **138**, 15642-15647.
- 25. N. Rubio, H. Au, H. S. Leese, S. Hu, A. J. Clancy and M. S. P. Shaffer, *Macromolecules*, 2017, **50**, 7070-7079.
- 26. J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H. P. Steinruck, E. Spiecker, F. Hauke and A. Hirsch, *Nat. Chem.*, 2011, **3**, 279-286.
- 27. D. Dasler, R. A. Schafer, M. B. Minameyer, J. F. Hitzenberger, F. Hauke, T. Drewello and A. Hirsch, J. Am. Chem. Soc., 2017, **139**, 11760-11765.
- 28. F. Hof, R. A. Schafer, C. Weiss, F. Hauke and A. Hirsch, *Chem. Eur.*, 2014, **20**, 16644-16651.
- 29. H. Au, N. Rubio and M. S. P. Shaffer, *Chem. Sci.*, 2018, **9**, 209-217.
- 30. R. A. Schafer, D. Dasler, U. Mundloch, F. Hauke and A. Hirsch, *J. Am. Chem. Soc.*, 2016, **138**, 1647-1652.
- H. S. Leese, L. Govada, E. Saridakis, S. Khurshid, R. Menzel, T. Morishita, A. J. Clancy, E. R. White, N. E. Chayen and M. S. P. Shaffer, *Chem. Sci.*, 2016, 7, 2916-2923.
- 32. S. Hu, Z. P. L. Laker, H. S. Leese, N. Rubio, M. De Marco, H. Au, M. S. Skilbeck, N. R. Wilson and M. S. P. Shaffer, *Chem. Sci.*, 2017, **8**, 6149-6154.
- 33. S. Pei and H.-M. Cheng, *Carbon*, 2012, **50**, 3210-3228.
- 34. S. Eigler, *Chem. Commun.*, 2015, **51**, 3162-3165.