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Figure S1: The crystal structure of compound 1a. (a) ORTEP view with thermal ellipsoids at 50 %
probability level. The magenta, green, blue and grey sphere represent the Co, Cl, N, and C atoms.
Hydrogen atoms are omitted for clarity. (b) The hydrogen bonded pseudo-one-dimensional chain-
like geometry along the b axis and the Co---Co short range distances.

Figure S2: Hydrogen bonding interactions (in A) in compound 1.
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Figure S4: Hydrogen bonding interactions (in A) in compound 3.
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Figure S5: Hydrogen bonding interactions (in A) in compound 4.
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Figure S6: UV-Visible spectra of compounds 1-4 in methanol.

The UV-Vis data collected at MeOH (Fig. S6) showed visible spectrum maxima at 512
nm (19531 cm™), 494 nm (20243 cm™), 491 nm (20367 cm™) and 488 nm (20492 cm™)
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respectively for compounds 1-4. The ground state of the Co(ll) Ox high spin compounds are
4T: and the optical transitions between %T; to *T, are usually much lower energy (near
infrared range). Therefore, the above transitions probably correspond to metal -ligand
charge transfers (MLCTs). From the energy distribution shown in Fig. 7 the transitions from
the %T; to *T, states are calculated as 8850 cm™ (1129 nm), 8400 cm™ (1190 nm), 10100 cm"
1 (990 nm) and 11200 cm™ (891 nm) correspondingly from compounds 1 to 4. We see
increasing magnitude of the metal-based transition energy is noticeable as the m-acceptor
property increases in compound 4. Note that these values are based on approximations and
we have not seen these transitions in the UV-Vis spectra collected below 800 nm (Fig. S6). In
practice these transitions are more likely to be found at lower energies due to mixing of the
ground state and the other low-lying excited states, but the trend should persist in this

system.
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Figure S7: M vs H plot of compound 1a at 100 K, the solid black circles are experimental data, and
the solid red line is fit of the experimental data. The linear fit (R = 0.999) indicates the absence of

the ferromagnetic impurities.
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Figure S8: M vs H plots of compounds 1-4 at 100 K ((a) for 1, (b) for 2, (c) for 3 and (d) for 4), the
solid black circles are experimental data, and the solid red line is fit of the experimental data. The
linear fits (R? values for compounds 1-4 are 0.999, 1, 0.999 and 1, respectively) indicate the absence
of the ferromagnetic impurities in all four compounds.
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Figure S9: M vs H/T curves for 1 (a), 2 (b), 3 (c), 4 (d). Lines are of best fit determined by fitting in
ANISOFIT2.0. The D, E and g values are listed in the table S1 (the black coloured data).
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Figure S10: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 1 in zero Oe applied dc field at different ac frequencies between 1 and 1000 Hz and
with a 4 Oe oscillating ac field. The lack of out of phase ac susceptibility signal signifies no slow
dynamics of magnetization.
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Figure S11: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 2 in zero Oe applied dc field at different ac frequencies between 1 and 1500 Hz and
with a 4 Oe oscillating ac field. The lack of out of phase ac susceptibility signal signifies no slow

dynamics of magnetization.
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Figure S12: Temperature dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility for 3 in zero Oe applied dc field at different ac frequencies between 1 and 1500 Hz and
with a 4 Oe oscillating ac field. The lack of out of phase ac susceptibility signal signifies no slow

dynamics of magnetization.
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Figure S13: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 4 in zero Oe applied dc field at different ac frequencies between 1 and 1500 Hz and
with a 4 Oe oscillating ac field. The lack of out of phase ac susceptibility signal signifies no slow
dynamics of magnetization.
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Figure S14: The frequency dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility of 1a at 3 K at different applied dc fields from 1000 to 2200 Oe and with a 4 Oe
oscillating ac field.
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Figure S15: The frequency dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility of 1a at 3 K at different applied dc fields from 1000 to 8000 Oe and with a 4 Oe
oscillating ac field.
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Figure S16: Field dependence of the characteristic relaxation frequency of the magnetization (Vmax)
as a function of the applied field at 3 K for compound 1a. This plot is deduced from the out-of-phase
(x") ac magnetic susceptibility plot in Figure S15. It finds a minimum value at 1800 Oe indicating the
slowest relaxation at that field. The solid line is a guide to the eye.
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Figure S17: The frequency dependence of in-phase (x') and out-of-phase (x") ac magnetic
susceptibility of 1 at 2.5 K at different applied dc fields between zero and 2000 Oe and with a 4 Oe
oscillating ac field.
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Figure S18: Field dependence of the characteristic relaxation frequency of the magnetization (Vmax)
as a function of the applied field in 1 at 2.5 K. This plot is deduced from the out-of-phase (x") ac
magnetic susceptibility plot in Figure S6. It finds @ minimum value at 1200 Oe indicating the slowest
relaxation at that field. The solid line is a guide to the eye.
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Figure $S19: Temperature dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility for 1 in 1200 Oe applied dc field at different ac frequencies between 1 and 1500 Hz
and with a 4 Oe oscillating ac field. The presence of nonzero signal in the out of phase ac

susceptibility signifies the slow dynamics of magnetization below 8 K.
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Figure S20: The frequency dependence of the in-phase (x') and out-of-phase (x'') ac magnetic

susceptibility for 1 in 1200 Oe applied dc field and 4 Oe oscillating ac field at different

temperatures.
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Figure S21: The frequency dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility of 2 at 4 K at different applied dc fields between zero and 2000 Oe and with a 4 Oe
oscillating ac field. Inset: Field dependence of the characteristic relaxation frequency of the
magnetization (vmax) as a function of the applied field. This plot is deduced from out-of-phase (x")
ac magnetic susceptibility plot and it finds a minimum value at 1000 Oe indicating the slowest
relaxation at that field. The solid line is a guide to the eye.
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Figure S22: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 2 in 1000 Oe applied dc-field at different ac frequencies between 1 and 1500 Hz
and with a 4 Oe oscillating ac field. The nature of ac susceptibility signifies slow dynamics of
magnetization below 7 K.
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Figure S23: The frequency dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 2 in 1000 Oe applied dc-field and 4 Oe oscillating ac field at different
temperatures.
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Figure S24: The frequency dependence of the in-phase (x') and out-of-phase (x") ac magnetic
susceptibility of 3 at 3 K at different applied dc fields between zero and 1500 Oe and with a 4 Oe
oscillating ac field. Inset: Field dependence of the characteristic relaxation frequency of the
magnetization (vmax) as a function of the applied field. This plot is deduced from out-of-phase (x")
ac magnetic susceptibility plot and it finds a minimum value at 800 Oe indicating the slowest
relaxation at that field. The solid line is a guide to the eye.
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Figure S25: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
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with a 4 Oe oscillating ac field. The nature of ac susceptibility signifies the slow dynamics of
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Figure S26: The frequency dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 3 in 800 Oe applied dc field and 4 Oe oscillating ac field at different
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susceptibility of 4 at 1.8 K at different applied dc fields between zero and 1500 Oe and with a 4 Oe
oscillating ac field. Inset: Field dependence of the characteristic relaxation frequency of the
magnetization (vmax) as a function of the applied field. This plot is deduced from out-of-phase (x")
ac magnetic susceptibility plot and it finds a minimum value at 700 Oe indicating the slowest
relaxation at that field. The solid line is a guide to the eye.
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Figure S28: Temperature dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 4 in 700 Oe applied dc field at different ac frequencies between 1 and 1500 Hz and
with a 4 Oe oscillating ac field. The nature of ac susceptibility signifies the slow dynamics of
magnetization below 4 K.
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Figure S29: The frequency dependence of the in-phase (x') and out-of-phase (x'') ac magnetic
susceptibility for 4 in 700 Oe applied dc field and 4 Oe oscillating ac field at different

temperatures.
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Figure S30: Cole-Cole plots for compounds 1-4.

Note for Cole-Cole plots: At fixed temperatures between 1.8 and 7 K (for 1 and 2), 1.8 and
4.5 K (for 3) and 1.8 and 3.1 K (for 4), semicircle Cole-Cole plots of x'(v) vs x"(v) were
generated and fitted using the generalized Debye model considering a single relaxation
pathway (Fig. S30). The a parameter which is the measure of the distribution of relaxation
times, ranges between 0.238-0.027 (for 1), 0.174-0.013 (for 2), 0.052-0.016 (for 3) and 0.044-
0.008 (for 4) indicating that the distribution pattern of single relaxation processes changes
significantly with the change of ligand environment of Co(ll). Compounds 1 and 2 have a
large range of a parameter, indicating wider distribution of relaxation times compared to
compounds 3 and 4. Additionally the low temperature (below 4 K) of #(T) vs. T data of 1
and 2 possess a larger deviation from the linear behaviour which are typically attributed to
the quantum tunnelling of magnetization (QTM) which is visually less contributing in the
relaxation of 3 and 4. The wider distribution of a parameter in the Cole-Cole plot of 1 and 2
at lower temperatures also supports the present of more QTM mechanism associate in the
low temperature relaxation mechanism.
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Figure S31: Semi log plots of 7(T) vs. 1/T for compounds 1-4. Solid lines are the best fits to the
Arrhenius law (Orbach relaxation) for the linear part of the relaxation time, with the equation #{T)
= 10 exp(Uest/ksT), detail as discussed in the main text.
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Figure S32: The fit of 1 vs T data of 1a with power law t! = bT". The polynomial exponent n = 2.54

with matrix coefficient b = 0.073 (R = 0.9964). The value of n = 2 indicates possible presence of
phonon bottleneck mechanism.
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Figure S33: The fit of T vs T data of compounds 1-4 with Raman relaxation mechanism using the
equation tl = bT", n is the power exponent of the temperature dependence of the relaxation time,
b is the coefficient of Raman relaxation.

AOM analysis:

Compound .
1 Co"(H;hip),Cl, 12000 - -
2 Co"(H,bip),Br, ] =

3 [Co"{H,bip);](Br), 10000— i -

4 [Co"(H,bip),(4,4'Me- o .

2,2'bipy)1(Br), o~ | = o
£ 6000 = o

e,(Cl) = 3000 cm-! W 4000 5 v

e,(Br) =2500 cm? ]

eo(Nimine) =3500 Cm_l 2000+

€5(Nji,) = 4500 cm 0_‘ = . .

e, (Cl) =600 cm? | =

e, (Br) =300 cm™ -2000 : ; : ,

en(Nimine) =100 cm_i 1 2 3 4

€5(Ngipy) =-500 cm™ Compounds
Compounds 2% (cm) x2-y2 (cm) xz (cm) yz (cm) xy (cm?)
1 10250 9750 900 900 1400
2 10000 9000 600 600 800
3 10500 10500 400 400 400
4 11000 12000 -200 -200 -800
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The rearrangement method of the D and E parameters:

Finding the E and D values greater than 1/3 is not unusual in many systems, and we have
recalculated it based on reference S9: R. Boc¢a, Theoretical Foundations of Molecular magnetism,
Elsevier, 1999, pages 424-425. The calculation for compound 1 and 2 here:

Application to compound 1:
From PHI (Ref 23: N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, J. Comput.
Chem., 2013, 34, 1164-1175)

D =-66.68, E =35.76. Now using these values,

D= 1/2 (-Dyy -Dy +2D,,) and E = 1/2 (D - D). Therefore

Dy=2/3D=-44.45

Dy=-1/3 D-E=-13.53

D= -1/3 D+E=57.99

Now rearranging the D tensors as |D’zz|> |D'yy|2 | D’'xx| we find |57.99| > |44.45| > |13.53|
Therefore, the new D=3/, D', =3/, x57.99 =86.98 and new E= 1/, (D',- D) = 15.46.

So the E/D = 15.46/86.98 = 0.178

Application to compound 2:
From PHI (Ref 23: N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, J. Comput.
Chem., 2013, 34, 1164-1175)

D=-72.62, E=34.21. Now using these values,

D= 1/2 (- Dy -D'yy+ 2D,,) and E = 1/2 (D'~ D'yy). Therefore

Dyn=2/3D=-48.41

Dy=-1/3 D-E=-10.00

Dw= —1/3D+E=5842

Now rearranging the D tensors as |D’zz|2 |D'yy|2 | D’xx| we find |58.42| > |48.41| > |10.00|
Therefore, the new D=3/, D', =3/, x58.42=87.63 and new E= 1/, (D,-D,,) = 19.21.

So the E/D =19.21/87.63 = 0.219.

Additional attempts to fit the static magnetic property data of compounds 1-4:
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The susceptibility data were fit along with reduced field magnetization, using PHI,%” to spin
Hamiltonians containing one magnetic centre, and best-fit parameters are listed in Table S1 below
(third line, blue values). When only the M vs H/T data are fit with PHI®’ (second line, red values in
Table S1) and ANISOFIT®® (first line, black values in Table S1, Fig. S9), we find slightly different but
comparable anisotropic parameters. The small differences of the D and E parameters found via PHI
and ANISOFIT appear to be related to differences of the spin Hamiltonian formalisms. Interestingly,
the D values obtained from the magnetization data (black and red lines in Table S1) show a positive
sign of D for the compounds 1 and 2, where the sign of D remains the same (see the blue line in
Table S1) for compounds 3 and 4. Note that the sign of D cannot be determined reliably from fits of
magnetization data of a bulk sample. We find the | D| of 1 obtained from M vs H/T fit (black and red
lines in Table S1) is noticeably high but comparable to other compounds. In contrast, the E values
are significantly large for 3 and 4 determined from the fit of the M vs H/T (black and red line in Table
S1). Despite the variation of the fitting parameters collected in Table 2 in the article, an apparent
decreasing trend in axiality (D) is found from 1-4, where | E/D| decreases. From the above discussion
and the fitting parameters collected in Table 2 it is evident that magnetic data of the bulk Co(ll)-
molecular samples could be qualitatively sufficient to determine anisotropic parameters, but not
sufficient for quantitative analysis.

Table S1. Fitting parameters of static magnetic properties for 1-4: M vs H/T using ANISOFIT (top
line in black) and PHI (middle line in red); combined fits of ymT vs T and M vs H/T data using PHI
(bottom line in blue). D and E in cm™?

g D* E| |E/D] R

1 2.92 +115.0 31.0 0.269
2.93 +117.30 34.02 0.293* 99.9811
2.62,3.13 +86.98* 15.46* 0.178* 99.9999

2 2.96 +81.5 19.2 0.236
3.01 +86.39 21.60 0.250* 99.9091
2.63, 3.09 +87.63* 19.21* 0.219* 99.9985

3 2.53 -24.9 5.3 0.213
2.52 -24.86 5.12 0.206 99.5968
2.54,2.91 -21.68 0.16 0.007 99.9307

4 2.59 +65.5 13.5 0.206
2.57 +64.50 13.42 0.208* 99.9867
2.96, 2.33 +77.53 0.30 0.004 99.9821

2 Note that the sign of D cannot be determined reliably from fits to magnetic susceptibility or
magnetization data of a bulk sample.

* The E/D values are recalculated using the rearrangement of the Dx, Dy, and D,, parameters
according to reference S9.
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For compound 1 the fit gives

D =-66.68 cm’, E=35.76 cm,
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Figure S34: The fit of the ymT vs T and M vs H/T data of compound 1 using PHI®” which determines
D =-66.68 cm™, E = 35.76 cm™. The rearranged D and E, and g values are listed in blue in the table
S1. The rearrangement method of the D and E parameters is described above.
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) ) For compound 1 the simulation
g g done using
=R 2.s D=86.98cm?, E=15.46cm?,
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5 } 1 g, = 2.09(3)
g,=3.19(1)
os g, =2.66(4)
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Figure $35: The simulation of the ymT vs T and M vs H/T data of compound 1 using fixed D and
E values which gives new gy, gy, and g, values. We have used PHI for the simulation.%” The D, E
and g values are listed in the table 2 of the main manuscript.
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Figure S36: The fit of the ymT vs T and M vs H/T data of compound 2 using PHI>” which determines
D =-72.62 cm™, E = 34.21 cm™. The rearranged D and E, and g values are listed in blue in the table
S1. The rearrangement method of the D and E parameters is described above.
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For compound 2 the simulation
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Figure S37: The simulation of the ymT vs T and M vs H/T data of compound 2 using fixed D and E
values which gives new gx, gy, and g, values. We have used PHI for the simulation.5” These values
are listed in the table 2 of the main manuscript.
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Figure $39: The simulation of the ymT vs T and M vs H/T data of compound 4 using fixed D and E
values which gives new gy, gy, and g, values. We have used PHI for the simulation.*’. The D, E and g
values are listed in the table 2 of the main manuscript.
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For compound 4 the simulation
done using

D=77.53cm-1, E=0.30cm-1,
which finds

g, = 1.83(3)

g,=3.20(2)

g, =2.22(5)
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Figure S40: The fit of the only M vs H/T data of compounds 1-4 using PHI*’. The corresponding D, E
and g parameters are listed in red coloured data in the Table S1.
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Figure S41: The linear fit of the In(t) vs In(T) data of compounds 1-4 at low temperature (below ~
2.5 K). The intercept and the slope of the fit represents the b and n of the Raman like relaxation for
the equation t! = bT".
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Figure S42: The linear fit of the In(t) vs In(T) data of compounds 1-4 at higher temperature (above™
2.5 K). The intercept and the slope of the fit represents the b and n of the Raman like relaxation for
the equation t! = bT".
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Figure S43: The linear fit of the In(t) vs In(T) data of compounds 1-4 separately below and above ~
2.5 K. It shows that at low temperature may be one type of phonon are driving the slow magnetic
dynamics in all four compounds, but as the temperature increase near 3 K the magnetic dynamics
are varied compound to compound, which could be Raman-like with different phonons or
exponential (as in figure S31).
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Table S2: Magnetic relaxation parameters for compounds 1-4 analysed with different

mechanisms
Parameters 1 2 3 4
dc field Hqc (Oe) 1200 1000 800 700
@1.8K 7(1.8K)ins 1.3x107 6.2x10°3 1.7x10°3 3.4x107
Orbach (Fig. WUesr (cm™?) 19.2 16.0 8.9 8.3
S$33) iz s 1.67x10° 2.45x10° 6.47x10° 1.27x10°
Orbach +QTM Tqmm (s) 5.6x103 2.5x10° 1.29x1073 3.8x10*
(Fig. 6) ®Uetr (cm™) 22.8 20.1 11.4 9.4
P70 (s) 7.04x107 9.01x107’ 3.05x10° 1.01x10°
Raman (all T, b (s.K") 0.35 1.59 51.62 500.81
Fig. S33) n 5.45 4.85 3.46 2.90
Raman (below % (sT.K") 19.49 37.71 127.74 671.83
~2.5K) In 2.28 2.53 2.60 2.52
Raman (above 9% (s1.K") 1.82 6.23 51.93 221.41
~2.5K) n 4.45 4.00 3.44 3.37

A7) = 1 exp(Ues/keT); °dT) " = zarm™ + ™" exp(Uett/ksT); T2 = bT"; *In(t)= Inb + nin(T), b= exp(Inb)
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