Support imformation

Facile synthesis of Co₃₋

_xMn_xO₄/C nanocages as an efficient sulfur host for lithiumsulfur batteries with enhanced rate performance

Zexian Zhang, Shiyuan Zhou, Tao Mei,* Yanzhuo Gou, Fanxuan Xie, Chengcheng

Liu, Xianbao Wang*

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China. E-mail: meitao@hubu.edu.cn (T.Mei); Tel: +86-27-8866 2132, Fax: +86-27- 8866 1729

Contents

1. Figures:

Figure. S1 (a) XRD pattern of $Co_{3-x}Mn_xO_4/C$ nanocages. (b) The XPS pattern of N in $Co_{3-x}Mn_xO_4/C/S$.

Figure. S2 XPS pattern of Co_{3-x}Mn_xO₄/C nanocages.

Figure. S3 Equivalent circuit of battery contained Co_{3-x}Mn_xO₄/C/S electrodes at 5 C.

Figure. S4 N₂ adsorption-desorption isotherm curves of Co_{3-x}Ni_xO₄/C nanocages.

Figure. S5 (a) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S and Discharge capacity of the $Co_{3-x}Ni_xO_4/C$ nanocages/S electrodes electrodes cycled at rate of 2 C, and the corresponding photos (inset). (b) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S electrodes cycled with S loading of 3.5 mg cm⁻². (c) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S with S loading of 3.2 mg cm⁻².

Figure. S6 CV tested between 1.7 and 2.8 V at a sweep rate of 0.1 mV s⁻¹ for Co_{3-x}Ni_xO₄/C/S.

Figure. S7 Aquivalent circuit of battery contained $Co_{3-x}Ni_xO_4/C/S$ electrodes at 2 C. Figure. S8 The XPS pattern of $Co_{3-x}Mn_xO_4/C$ nanocages after absorbing Li_2S_4 : (a) Mn2p; (b) Co2p.

Figure. S9 (a) The XPS pattern of S after absorbing test. (b) UV-vis spectra of supernatant of Li_2S_4 solution after the adsorption test. (c) Schematic illustration of $Co_{3-x}Mn_xO_4$ promoting the conversion of lithium polysulfides (LiPSs). (d) Schematic illustration of anchoring effect comparison.

Figure. S10 The FESM images of $Co_{3-x}Ni_xO_4/C/S$ after running for (a) 100 cycles and (d) 200 cycles at a rate of 2 C in coin cells.

2. Tables:

Table. S1 EDS of a single Co_{3-x}Mn_xO₄/C nanocage.

Table. S2 Parameters of the every part of an analog circuit of Co_{3-x}Mn_xO₄/C/S.

Table. S3 Parameters of the every part of an analog circuit of Co_{3-x}Ni_xO₄/C/S.

Table. S4 Summary of electrochemical performance of various ZIF-67 derived nanocages and Co_3O_4 in LSBs.

Fig. S1 (a) XRD pattern of $Co_{3-x}Mn_xO_4/C$ nanocages. (b) The XPS pattern of N in $Co_{3-x}Mn_xO_4/C/S$.

Element	Mass percent (wt%)	Atomic percentage (%)
0	38.9	47.1
Co	30.0	9.9
С	20.2	32.6
Ν	6.4	8.9
Mn	4.5	1.6

Table. S1 EDS of a single $Co_{3-x}Mn_xO_4/C$ nanocage.

Fig. S2 XPS pattern of $Co_{3-x}Mn_xO_4/C$ nanocages.

Fig. S3 Equivalent circuit of battery contained $Co_{3-x}Mn_xO_4/C/S$ electrodes at 5 C.

Cycle Number	Rs	Rsuf	Rct
1 st	4.9	72.7	71.3
10 th	10.2	95.8	82.6
100 th	13.3	256.3	266.3
500 th	15.1	357.0	370.3

Table. S2 Parameters of the every part of an analog circuit of $Co_{3-x}Mn_xO_4/C/S$.

Fig.S4 N_2 adsorption-desorption isotherm curves of $Co_{3-x}Ni_xO_4/C$ nanocages.

Fig. S5 (a) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S and Discharge capacity of the $Co_{3-x}Ni_xO_4/C$ nanocages/S electrodes electrodes cycled at rate of 2 C, and the corresponding photos (inset). (b) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S electrodes cycled with S loading of 3.5 mg cm⁻². (c) Discharge capacity of the $Co_{3-x}Mn_xO_4/C$ nanocages/S with S loading of 3.2 mg cm⁻².

Fig. S6 CV tested between 1.7 and 2.8 V at a sweep rate of 0.1 mV s⁻¹ for Co_{3-x}Ni_xO₄/C/S.

Fig. S7 Aquivalent circuit of battery contained $Co_{3-x}Ni_xO_4/C/S$ electrodes at 2 C.

Cycle Number	Rs	Rsuf	Rct
1 st	10.5	97.0	66.7
200 th	25.8	515.3	520.5

Table. S3 Parameters of the every part of an analog circuit of $Co_{3-x}Ni_xO_4/C/S$.

Fig. S8 The XPS pattern of Co_{3-x}Mn_xO₄/C nanocages after absorbing Li₂S₄: (a) Mn2p;
(b) Co2p.

Fig. S9 (a) The XPS pattern of S after absorbing test. (b) UV-vis spectra of supernatant of Li_2S_4 solution after the adsorption test. (c) Schematic illustration of $Co_{3-x}Mn_xO_4$ promoting the conversion of lithium polysulfides (LiPSs). (d) Schematic illustration of anchoring effect comparison.

Fig. S10 The FESM images of $Co_{3-x}Ni_xO_4/C/S$ after running for (a) 100 cycles and (d) 200 cycles at a rate of 2 C in coin cells.

Matrix	Areal	Sulfur	Final	Rate	Capacity	Cycle	Rate	Ref.
	sulfur	content	capacity	/current	retention	numbers	performance	
	loading	(wt%)	(mAh g ⁻¹)	density	(%)		(mAh g ⁻¹)	
	(mg cm ⁻							
	2)							
Co _{3-x} Mn _x O ₄ /C	1.3	66	893	1 C	82.5	500	700 (3 C)	This
							628 (5 C)	work
							405 (10 C)	
CNT@Co-N-C	2.0	71	970	0.2 C	79.8	500	620 (5 C)	1
N-Co ₃ O ₄ @N-C	5.8	_	568	0.2 C	46.4	500	611 (2 C)	2
Co ₃ O ₄ /C	1.4	70	817	0.2 C	75.9	100	807 (1 C)	3
nanocage							682 (2 C)	
Co ₃ O ₄	2.5	_	630	0.1 C	55.6	200	620 (4 C)	4
polyhedron								
Co@C	2.1	70	790	0.2 C	91.6	220	712 (1 C)	5
RGO/C-Co	1.0	59	949	0.3 A g ⁻¹	91.7	300	479 (5 A g ⁻¹)	6
Cobalt-graphitic	2.2-2.3	77	833	0.5 C	72.6	500	718 (1 C)	7
carbon								
nanocages								
C-Co-N	2.0	52 (Li ₂ S)	929	0.2 C	80.4	300	898 (2 C)	8
	(Li ₂ S)						604 (4 C)	
Co ₃ O ₄ nanofiber	1.3	72	726	0.5 C	79.3	200	796 (1 C)	9
Co ₃ O ₄	4.1	_	987	0.5 C	80.1	200	476 (2 C)	10
nanoneedle								
Co ₃ O ₄ submicro-	1.0	66	805	0.2 C	89.2	100	428 (3 C)	11
spheres								
TiO ₂ /Co ₃ O ₄	1.5	54	968	0.1 C	85	100	684 (1 C)	12
nanocrystal								
Co ₃ O ₄ -T	1.0	78	1081	100	84.8	50	492.3 (1000	13
nanotube							mA g ⁻¹)	
Co ₃ O ₄ embedded	5.2	_	930	0.2 A g ⁻¹	88.5	300	410 (3.2 A g	14
carbon							1)	
Co ₃ O _{4-x}	2.0	_	1054	0.2 C	83.9	100	852 (2 C)	15
microsphere							780 (3 C)	
NiO-Co ₃ O ₄	-	52	713	1 C	79.5	200	827 (2 C)	16
hollow shell								

Table. S4. Summary of electrochemical performance of various ZIF-67 derivednanocages and Co_3O_4 in LSBs.

References

- J. Zhao, C. Liu, H. Deng, S. Tang, C. Liu, S. Chen, J. Guo, Q. Lan, Y. Li, Y. Liu, M. Ye, H. Liu, J. Liang and Y.-C. Cao, *Materials Today Energy*, 2018, 8, 134-142.
- J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su and G. Wang, *J. Mater Chem. A*, 2018, 6, 2797-2807.
- L. Zhou, H. Li, X. Wu, Y. Zhang, D. L. Danilov, R.-A. Eichel and P. H. L. Notten, ACS Appl Mater Interfaces, 2019, 2, 8153-8162.
- Z. Zhou, Y. Li, T. Fang, Y. Zhao, Q. Wang, J. Zhang and Z. Zhou, Nanomaterials (Basel), 2019, 9, 1574.
- Y. Q. Lu, Y. J. Wu, T. Sheng, X. X. Peng, Z. G. Gao, S. J. Zhang, L. Deng, R. Nie, J. Swiatowska, J. T. Li, Y. Zhou, L. Huang, X. D. Zhou and S. G. Sun, ACS Appl Mater Interfaces, 2018, 10, 13499-13508.
- Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang and L. Yin, *Nano Energy*, 2016, 23, 15-26.
- D. Xiao, Q. Li, H. Zhang, Y. Ma, C. Lu, C. Chen, Y. Liu and S. Yuan, J. Mater Chem. A, 2017, 5, 24901-24908.
- J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin and W. He, ACS Nano, 2016, 10, 10981-10987.
- 9. Y. Chen and X. Ji, J. Phys. Chem. C, 2019, 777, 688-692.
- Z. Chang, H. Dou, B. Ding, J. Wang, Y. Wang, X. Hao and D. R. MacFarlane, J. Mater Chem. A, 2017, 5, 250-257.
- F. Ma, J. Liang, T. Wang, X. Chen, Y. Fan, B. Hultman, H. Xie, J. Han, G. Wu and Q. Li, *Nanoscale*, 2018, **10**, 5634-5641.
- C.-Y. Fan, S.-Y. Liu, H.-H. Li, Y.-H. Shi, H.-C. Wang, H.-F. Wang, H.-Z. Sun, X.-L. Wu and J.-P. Zhang, *J. Mater Chem. A*, 2017, 5, 11255-11262.
- 13. J. Wang, C. Wang and M. Zhen, Chem. Eng. J., 2019, 356, 1-10.
- S. Wang, X. Hou, Z. Zhong, K. Shen, G. Zhang, L. Yao and F. Chen, *Sci Rep*, 2018, 8, 16133.

- J. Wang, W. Wang, Y. Zhang, Z. Bakenov, Y. Zhao and X. Wang, *Mater. Lett.*, 2019, 255, 126581.
- W. Tang, Y. Zhang, W. Zhong, M. K. Aslam, B. Guo, S. J. Bao and M. Xu, Nanoscale, 2019, 11, 14648-14653.