Titanicone-derived TiO₂ quantum dots@carbon encapsulated ZnO nanorods anodes for stable lithium storage

Jia-Bin Fang, Chang Liu, Tao-Qing Zi, Yan-Qiang Cao, Di Wu, Ai-Dong Li*

National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

Electronic mail: <u>adli@nju.edu.cn</u>

Fig. S1 FESEM images of the ZnO products obtained with different hydrothermal reaction times of (a, d) 5 h, (b, e) 6 h, and (c, f) 7 h.

Fig. S2 (a) Low-magnification, (b) high-magnification, and (c) high resolution TEM images of ZnO NRs

Fig. S3 (a) HRTEM image of TiO_2 QDs@carbon@ZnO NRs and (b) the corresponding diameter dispersion of the TiO_2 QDs.

Fig. S4 The first three CV curves of the control sample of ZnO NRs anode.

Fig. S5 Rate capacity at different current densities of ZnO nanorods sample.

Fig. S6 (a) Nyquist plots of the TiO₂ QDs@carbon@ZnO NRs composite and the ZnO NRs electrodes before cycling. SEM images of (b) ZnO NRs and (c, d) TiO₂ QDs@carbon@ZnO NRs electrodes after 500 cycles at a current density of 2 A g^{-1} .

Fig. S7 XPS depth profile of TiO_2 QDs@carbon@ZnO NRs electrodes after 500 cycles. (a) Atomic concentration distribution of P and Ti elements with sputtering time. (b) Ti 2p spectra after etch time of 30 s and 210 s.

To further study the TiO₂ QDs effect on carbon matrix, we calculated the migration barriers for Li⁺ transported within the pure carbon and the TiO₂ QDs@carbon layer interior using the density functional theory (DFT) as implemented in the CASTEP code. The atomic structures were fully relaxed in all calculations in both pure carbon and TiO₂ QDs@carbon. A vacuum distance in the z axis was set to 8.5 Å, which led to negligible interactions between successive slabs. The energy cut-off was set to 500 eV, and Brillouin zone integration was represented using the K-point sampling scheme of a $3\times3\times1$ Monkhorst-Pack grid. The energy barrier (Δ E) was defined as Δ E=E_{TS}-E_{IS}, where E_{TS} and E_{IS} represent the energy of the transition state and the initial state, respectively.

Fig. S8 Lattice spacing and Li^+ migration energy barrier of (a) the graphite and (b) TiO₂ QDs@carbon layer.

Corrente	Atomic ratio (at %)					
Sample	Ti	С	0	Zn		
TiO ₂ QDs@carbon@ZnO	7.42	46.34	33.54	12.70		

Table S1 XPS compositional ratio of TiO₂ QDs@carbon@ZnO NRs.

Table S2 Main synthesis methods and electrochemical performance for the ZnObased electrodes with different morphologies.

Morphology	Synthetic method	Current density	Cycle	Specific capacity	Ref.
		(A g ⁻¹)	number	(mA h g ⁻¹)	
ZnO on carbon black	ALD	0.1	500	1026	1
ZnO/NiO microspheres	Solvothermal	0.1	200	1008.6	2
ZnO@ZnSnO3 QDs NR	CBD	0.2	110	1073	3
ZnO@C nanoflower	Hydrothermal	0.1	80	1200	4
		5	500	420	
ZnO@TiO2 heterostructure	ALD	1	250	1000	5
ZnO QDs/graphene	ALD	0.1	50	960	6
ZnO@ZnO QDs/C	Hydrothermal	0.5	100	699	7
CNT@ZnO composites	Liquid-phase	0.1	50	709.2	8
	method				
ZnO@CF	Hydrothermal	0.1	200	850	9
TiO2 QDs@carbon@ZnO	MLD	0.2	100	1154	This
composite		2	500	470	work

References

- 1. S. Lu, H. Wang, J. Zhou, X. Wu and W. Qin, *Nanoscale*, 2017, 9, 1184-1192.
- J. Li, D. Yan, S. Hou, T. Lu, Y. Yao, D. H. Chua and L. Pan, *Chemical Engineering Journal*, 2018, 335, 579-589.
- 3. H. Tan, H.-W. Cho and J.-J. Wu, *Journal of Power Sources*, 2018, 388, 11-18.
- 4. L. Shi, D. Li, J. Yu, H.-M. Zhang, S. Ullah, B. Yang, C. Li, C. Zhu and J. Xu, *Journal of Power Sources*, 2018, **387**, 64-71.
- L. Wang, X. Gu, L. Zhao, B. Wang, C. Jia, J. Xu, Y. Zhao and J. Zhang, *Electrochimica Acta*, 2019, 295, 107-112.
- X. Sun, C. Zhou, M. Xie, H. Sun, T. Hu, F. Lu, S. M. Scott, S. M. George and J. Lian, *Journal of Materials Chemistry A*, 2014, 2, 7319-7326.

- G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C. C. Li and H. Duan, *Advanced materials*, 2015, 27, 2400-2405.
- 8. D. Wang, J. Guo, C. Cui, J. Ma and A. Cao, *Materials Research Bulletin*, 2018, **101**, 305-310.
- 9. C. Xiao, S. Zhang, S. Wang, Y. Xing, R. Lin, X. Wei and W. Wang, *Electrochimica Acta*, 2016, **189**, 245-251.